
Accelerating
Simulations in gem5

A presentation by

Kaustav Goswami

Outline of this session

 We will first address why do we need to make simulations faster, and,

then we will see how can we make simulations faster.

 We will work together to create a runscript, that we will use throughout

this session.

 We will iterate over each of the techniques of accelerating simulations,

and work on several hands-on sessions.

 We will keep on modifying the runscript.

> cd materials/using-gem5/09-accelerating-simulations/

Hands-on Session: Matrix Multiply

• Go to the data-files directory.

• Compile the matrix multiply

(mm_base.cpp) program on your

host machine.

• Run the program with 100x100

matrix.

• Increase the size to 1000x1000.

What’s wrong?

> cd data-files/base

> g++ mm_base.cpp

How do we make gem5 simulations faster?

Annotating
workloads

Using
Checkpoints

Sampling

Creating the pre-requisite runscript

 We need to write a configuration script to execute the mm code.

 We will use the SimpleBoard in gem5 to do SE mode simulations.

 This will be a work along session.

 There are three TODOs marked in the runscript.

 Run the binary file with 100x100 elements.

> cd 00-prerequisite-runscript

Rationale Behind Accelerating Simulations

 We need a mechanism in gem5 for the simulated program can

communicate with the host machine.

 This allows us to manipulate the runscript.

 We can keep only essential statistics of the simulation.

gem5 EXIT Events

 EXIT events in gem5 allows us to communicate from the simulator to the

host.

 These are implemented as magic instructions or memory mapped I/O.

 There are different types of EXIT Events in gem5.

Different types of EXIT Events in gem5

 ExitEvent.EXIT

 ExitEvent.CHECKPOINT

 ExitEvent.FAIL

 ExitEvent.SWITCHCPU

 ExitEvent.WORKBEGIN

 ExitEvent.WORKEND

 ExitEvent.USER_INTERRUPT

 ExitEvent.MAX_TICK

Annotations

 We only care about important regions during the simulation.

 In other words, we have regions of interests or ROIs.

 How do we make gem5 understand ROIs?

The m5 utility!

The m5 instruction

 What is m5?

 m5 can be implemented as a magic instruction or as memory-mapped I/O

or MMIO.

 We add m5 library calls in the source code.

m5 Library Calls

 We need to identify ROIs.

 Look at the previous example,

but with annotations.

 We use m5_work_begin(M, N) at

the beginning and

m5_work_end(M, N) at the end

of the ROI.

 This resets the statistics which is

recorded in the m5out/stats.txt

file.

Annotation Example

 Go to data_files/annotated

 Open and review the mm_annotated.cpp file.

 Compile the mm_annotated.cpp

Wait! How do we compile the code?

Recapping how to compile annotated code

 The m5 utility must be compiled in

the util/m5.

 Change the GEM5_HOME variable.

 We need to modify the CFLAGS and

LDFLAGS in the Makefile.

 We need to include the m5ops.h

file from include/gem5/directory.

 Make

> cd gem5

Hands-on Session I: Modify the runscript

 Modify the original runscript to execute the mm_annotated binary.

 Print the total number of ticks.

 Print the EXIT Event.

 Look at the number of ticks in the m5out/stats.txt file.

> cd 01-modifying-runscript

Some m5 function calls in gem5

 m5_reset(M, N): It resets the stats file. A new section is generated in the

m5out/stats.txt file.

 m5_dump_reset_stats(M, N): It dumps the stats and resets the stats file.

 m5_work_begin(X, Y): It starts keeping stats.

 m5_work_end(X, Y): It stops keeping stats.

 m5_exit(M): It drops a ExitEvent.EXIT EXIT Event in the runscript.

> cd gem5/include/gem5

> code m5ops.h

Understanding the different m5 function calls

Fig. Executing without ROI annotations.

Fig. Executing with ROI begin and end.

Understanding the different m5 function calls

Fig. Executing with m5_reset_stats(0, 0).

Fig. Executing with m5_dump_reset_stats(0, 0).

Annotating a real-world workload.

 As computer architects, we must work with standard benchmark

programs to analyze the performance and requirements of the proposed

design.

 It is important to understand the characteristics of the workload.

 In this session, we will investigate the LLVM’s Stanford Benchmark Suite

[1].

[1] C. Lattner and V. Adve, "LLVM: a compilation framework for lifelong program analysis & transformation," International

Symposium on Code Generation and Optimization, 2004. CGO 2004., 2004, pp. 75-86, doi: 10.1109/CGO.2004.1281665.

Hands-on Session II: Annotating real-world workload.

 We will annotate Bubblesort in this

session.

 Download the benchmarks.

 Edit the Bubblesort.cpp file.

 Compile

 Simulate

> cd 02-annotating–llvm-

stanford

Analyzing Hands-on Session II

 Are there repeating patterns? The

entire Bubble(i) function is being

called for 10 times.

 Do we need the same stats 10

times?

 Let us use m5_exit(M) at the end.

> cd 02-annotating–llvm-

stanford/optimized

More on workload annotation

 Refer to previously annotated benchmark programs such as NAS-Parallel-

Benchmarks [2], parsec [3] and gabps [4] for understanding more on

workload annotation.

[2] Bailey, David H., et al. "The NAS parallel benchmarks summary and preliminary results." Supercomputing'91: Proceedings of the

1991 ACM/IEEE conference on Supercomputing. IEEE, 1991.

[3] Christian Bienia et al. 2008. The PARSEC benchmark suite: characterization and architectural implications. In Proceedings of

the 17th international conference on Parallel architectures and compilation techniques (PACT '08). ACM, New York, NY, USA, 72–81.

https://doi.org/10.1145/1454115.1454128

[4] S. Beamer, K. Asanovi ć, and D. Patterson, “The gap benchmark suite,” 2015. [Online]. Available:

https://arxiv.org/abs/1508.03619

> echo “Restoring the session: Accelerating Simulations”

Housekeeping

 There was a mistake in

the m5_work_begin()

and m5_work_end() slides/codes.

 Thanks for pointing this out.

 The set_se_workload never

exits when encounters a work

item.

 We must explicitly

set `board.exit_on_work_items =

True` (or wait for the next patch).

Checkpoints in gem5

 Simulations take a long time.

 We need to be able to save and restore the state of simulation in gem5.

 Checkpoints were originally designed to be used with AtomicSimpleCPU.

 We can take checkpoints whenever we want.

 We will use the EXIT Event: ExitEvent.CHECKPOINT.

 It can be triggered by the function m5_checkpoint(M, N).

Checkpoints in gem5

 The cpt file stores the simulation

values of all the SimObjects.

 What happens when we want to

switch components?

 What happens to the cache when

you load a checkpoint?

Checkpointing the mm code

 Let us checkpoint the simulation

before the matrix multiplication

starts.

 We need to add an

m5_checkpoint(0, 0)

 The simulator module can easily

restore the saved checkpoint.

 We also need to modify the

runscript.

More on Checkpoints

 Checkpoints can be taken after a

certain number of ticks have been

simulated.

 Checkpoints can also be taken

periodically.

 On can also trigger

ExitEvent.USER_INTERRUPT and

write a checkpoint to continue the

simulation later.

Hands-on Session III: Restoring a checkpoint

 In this assignment, you will be provided with a cpt file of the mm code.

 This checkpoint file was taken after executing 1T ticks on the machine

defined by the runscript.

 Your objective will be to:

• Restore the checkpoint.

• Execute the next 10B ticks.

• Save the checkpoint.

> cd 03-checkpoints

Fast-forwarding

 Once we have our code annotated,

we fastforward our simulations.

 gem5 supports switchable CPUs.

 We use kvm or atomic cpu to

simulate the non-essential regions

of the code. Then we switch to any

timing cpu.

Sampling

 We can sample essential parts of the simulation to find a representative

statistics for the whole workload.

 We use a combination of both kvm/atomic and timing CPUs.

[*] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and Brad Calder. 2003. Using SimPoint for accurate and

efficient simulation. SIGMETRICS Perform. Eval. Rev. 31, 1 (June 2003), 318–319. https://doi.org/10.1145/885651.781076

Thank You!

	Slide 1: Accelerating Simulations in gem5
	Slide 2: Outline of this session
	Slide 3: Hands-on Session: Matrix Multiply
	Slide 4: How do we make gem5 simulations faster?
	Slide 5: Creating the pre-requisite runscript
	Slide 6: Rationale Behind Accelerating Simulations
	Slide 7: gem5 EXIT Events
	Slide 8: Different types of EXIT Events in gem5
	Slide 9: Annotations
	Slide 10: The m5 instruction
	Slide 11: m5 Library Calls
	Slide 12: Annotation Example
	Slide 13: Recapping how to compile annotated code
	Slide 14
	Slide 15: Some m5 function calls in gem5
	Slide 16: Understanding the different m5 function calls
	Slide 17: Understanding the different m5 function calls
	Slide 18: Annotating a real-world workload.
	Slide 19: Hands-on Session II: Annotating real-world workload.
	Slide 20: Analyzing Hands-on Session II
	Slide 21: More on workload annotation
	Slide 22
	Slide 23: Housekeeping
	Slide 24: Checkpoints in gem5
	Slide 25: Checkpoints in gem5
	Slide 26: Checkpointing the mm code
	Slide 28: More on Checkpoints
	Slide 29: Hands-on Session III: Restoring a checkpoint
	Slide 30: Fast-forwarding
	Slide 31: Sampling
	Slide 32: Thank You!

