Accelerating
Simulations in gem5

A presentation by

Kaustav Goswami

COMPUTER SCIENCE

Outline of this session

We will first address why do we need to make simulations faster, and,
then we will see how can we make simulations faster.

We will work together to create a runscript, that we will use throughout
this session.

We will iterate over each of the techniques of accelerating simulations,

and work on several hands-on sessions.

We will keep on modifying the runscript.

> c¢d materials/using-gem5/09-accelerating-simulations/

e¢?cembd

Hands-on Session: Matrix Multiply

: /scr/kaustavg/projects/bootcamp-code$ g++ mm_base.cpp
: /scr/kaustavg/projects/bootcamp-code$./a.out
Printing Statistics :: Wall Clock Time

Program: 4.7777e-05 s
Matrix Multiply: 4.191e-06 s

: /scr/kaustavg/projects/bootcamp-code$ g++ mm _base.cpp
: /scr/kaustavg/projects/bootcamp-code$./a.out
Printing Statistics :: Wall Clock Time

Program: 0.00500679 s
Matrix Multiply: ©.80389788 s

: /scr/kaustavg/projects/bootcamp-code$ g++ mm_base.cpp
: /scr/kaustavg/projects/bootcamp-code$./a.out
Printing Statistics :: Wall Clock Time

What's wrong?

Matrix Multiply: 9.53323 s

: /scr/kaustavg/projects/bootcamp-codes ||

> cd data-files/base

> g++ mm_base.cpp

e¢?cemMmbd

How do we make gem5 simulations faster?

Annotating
workloads

Using
Checkpoints

)

e?cemMmbd

Sampling

Creating the pre-requisite runscript

We need to write a configurationscript to execute the mm code.
We will use the SimpleBoard in gem5 to do SE mode simulations.
This will be a work along session.

There are three TODOs marked in the runscript.

Run the binary file with 100x100 elements.

> cd 00-prerequisite-runscript

e¢dcemb

Rationale Behind Accelerating Simulations

We need a mechanismin gem5 for the simulated program can
communicate with the host machine.

This allows us to manipulatethe runscript.

We can keep only essential statistics of the simulation.

e?cembd

gem5 EXIT Events

EXIT eventsin gem5 allows us to communicate from the simulator to the

host.

These are implemented as magic instructions or memory mapped /0.

There are different types of EXIT Events in gem5.

e?cembd

Different types of EXIT Events in gem5

ExitEvent.EXIT
ExitEvent.CHECKPOINT
ExitEvent.FAIL
ExitEvent.SWITCHCPU
ExitEvent. WORKBEGIN
ExitEvent. WORKEND
ExitEvent.USER_INTERRUPT
ExitEvent. MAX_TICK

e?cembd

Annotations

The m5 utility!

The m5 instruction

What is m5?

m5 can be implemented as a magic instruction or as memory-mapped /0
or MMIO.

We add m5 library calls in the source code.

e?cembd

m5 Library Calls

We need to identify ROls.

61 // Naive matrix multiplication code. It performs N”3 computations. We also
62 // keep a track of time for this part of the code.
63 I
LOOk at the preViOUS exam ple’ 2:51 auto mm_start = std :: chrono :: high resolution clock :: now();
66 // annotating the ROI
H . 67 I
but with annotations. G stilt s
69 m5 work begin{(@, @);
70 #endif
° 71
for{(int 1 =0 ; i <N ; i++)
We use m5_work_begin(M, N) at I L
74 for{int k = @ ; k < N ; k++)
i i [4i1131 += ALi10k] * BIKI[I;
the beginning and " LAY <= ALK BT
77 // end of ROI
78 I/
m5_work_end(M, N) at the end s sirder cens
- - 80 m5 work end(@):
81 #endif
82
Of the ROI' 83 auto mm_end = std :: chrono :: high resolution clock :: now();
84
. 85 // Free the memory allocated.
This resets the statistics which is | et datan
88 delete data B;
A 89 delete data_C;
recorded in the m5out/stats.txt o | denere s
elete B;
. 92 delete C;
file. m

e?cembd

Annotation Example

-~

.

~

Wait! How do we compile the code?

/

Recapping how to compile annotated code

-+ m5 git:(stable) scons build/x86/out/ms

T h 5 H I H b : I d H scons: Reading SConscript files ...
e m utl Ity m U St e Com pl e I n Checking for java package org.junit...(cached) no
junit test framework not found, not build java wrapper test
Checking whether pkg-config program exists.../usr/bin/pkg-config
e Checking for pkg-config package luasl...(cached) no
th e ut II m 5 . lua 5.1 not detected, not building lua wrapper.
scons: done reading SConscript files.
scons: Building targets ...

Change the GEM5_HOME variable.

19 #CFLAGS

We need to mOdifV the CFLAGS and 32 CFLAGS=-std=c++14 -static -03 -IS(GEM5 HOME)/include

22
LDFLAGS in the Makefile. 23 FLDFLAGS

25 LDFLAGS=-L$(GEM5 HOME) /util/m5/build/$(TARGET ISA)/out -1m5
We need to include the m5ops.h ”
file from include/gem5/directory.

9

16 #define GEM5

Make 1

12 #ifdef GEM5

13 #include <gem5/m5ops.h=
> c¢d gem5 gems/mSop

14 #Fendif

¢? geng5

Hands-on Session |: Modify the runscript

Modify the original runscriptto execute the mm_annotated binary.
Printthe total number of ticks.
Printthe EXIT Event.

Look at the number of ticks in the m5out/stats.txt file.

The simulator module has these methods which can be helpful for this
hands-on session:

simulator.get current tick() -= returns the current tick
simulator.get last exit event cause() -= returns the last EXIT event cause

H H H W W

> c¢d @1-modifying-runscript

e¢?cemMmbd

Some mb5 function calls in gem5

m5_reset(M, N): It resetsthe statsfile. A new sectionis generated in the
m5out/stats.txt file.

m5_dump_reset_stats(M, N): It dumps the statsand resets the statsfile.
m5_work_begin(X, Y): It starts keeping stats.
m5_work_end(X, Y): It stops keeping stats.

mb5_exit(M): It drops a ExitEvent.EXIT EXIT Event in the runscript.

> c¢d gem5/include/gem5

> code m5ops.h

Understanding the different m5 function calls

W00 = W W R

el e el
Wk =@

(U= 0 « B = VR R R E S

e el
WM =@

simSeconds 0.1730881 # Number of seconds simulated (Second)

simTicks 173081275137 # Number of ticks simulated (Tick)

finalTick 173881275137 # Number of ticks from beginning of simulation (restored from checkpoints and never reset) (Tick)
simFreq 1000000000800 # The number of ticks per simulated second ((Tick/Second})

hostSeconds 8.03 # Real time elapsed on the host (Second)

hostTickRate 21564253748 # The number of ticks simulated per host second (ticks/s) ((Tick/Second))
hostMemory 1225464 # Number of bytes of host memory used (Byte)

simInsts 2386715 # Number of instructions simulated (Count)

simOps 4156319 # Number of ops (including micro ops) simulated (Count)

hostInstRate 297357 # Simulator instruction rate (inst/s) ((Count/Second))

hostOpRate 517082 # Simulator op (including micro ops) rate (op/s) ((Count/Second))

simSeconds 0.008159 # Number of seconds simulated (Second)

simTicks 8159148018 # Number of ticks simulated (Tick)

finalTick 8159148018 # Number of ticks from beginning of simulation (restored from checkpoints and never reset) (Tick)
simFreq 1000000000000 # The number of ticks per simulated second ((Tick/Second))

hostSeconds 0.41 # Real time elapsed on the host (Second)

hostTickRate 19712732539 # The number of ticks simulated per host second (ticks/s) ((Tick/Second))
hostMemory 1180944 # Number of bytes of host memory used (Byte)

simInsts 111968 # Number of instructions simulated (Count)

simOps 209867 # Number of ops (including micro ops) simulated (Count)

hostInstRate 270466 # Simulator instruction rate (inst/s) ({Count/Second))

hostOpRate 506938 # Simulator op (including micro ops) rate (op/s) ((Count/Second))

Fig. Executing without ROl annotations.

Fig. Executing with ROl begin and end.

cemd

465
466
467
468
469
470

918
919
920
921
922
923
924

Understanding the different m5 function calls

simSeconds
simTicks
finalTick

simSeconds
simTicks
finalTick

simSeconds
simTicks
finalTick

simSeconds
simTicks
finalTick

0.000956
955552491
8161572591

Number of seconds simulated (Second)
Number of ticks simulated (Tick)
Number of ticks from beginning of simulation (restored from checkpoints and never reset) (Tick)

Fig. Executing with m5 reset stats(0, 0).

0.006500
6499623204
6499623204

0.000706
706311315
7205934519

0.000955
955384326
8161318845

Number
Number
Number

Number
Number
Number

Number
Number
Number

of
of
of

of
of
of

of
of
of

seconds simulated (Second)
ticks simulated (Tick)
ticks from beginning of simulation (restored from checkpoints and never reset) (Tick)

seconds simulated (Second)

ticks simulated (Tick)
ticks from beginning of simulation (restored from checkpoints and never reset) (Tick)

seconds simulated (Second)

ticks simulated (Tick)
ticks from beginning of simulation (restored from checkpoints and never reset) (Tick)

Fig. Executing with m5_dump_reset_stats(0, 0).

cemd

Annotating a real-world workload.

As computer architects, we must work with standard benchmark

programs to analyze the performance and requirements of the proposed
design.

It is importantto understand the characteristics of the workload.

In this session, we will investigate the LLVM’s Stanford Benchmark Suite

[1].

[1] C. Lattner and V. Adve, "LLVM: a compilation framework for lifelong program analysis & transformation," International
Symposium on Code Generation and Optimization, 2004. CGO 2004., 2004, pp. 75-86, doi: 10.1109/CG0.2004.1281665.

e?cembd

Hands-on Session |I: Annotating real-world workload.

We will annotate Bubblesort in this dlbin e
144 top=srtelements;

1 145

SeSSIOn' 14; while (top=1) {
147
148 i=1;
149 while (i<top) {

Download the benchmarks.
151 if (sortlist[i] = sortlist[i+1]) {
152 j = sortlist[i];

. = 153 sortlist[;] = sortlist[i+l];

Edit the Bubblesort.cpp file. 154 | sortlistiial = 5
156 i=i+1;
157 b

A 158

Compile s cop=top-1;
160 }
161 if ((sortlist[1] != littlest) || (sortlist[srtelements] != biggest))

. 162 printf ("Error3 in Bubble.\n");

Simulate 6 p

165 }

166

167 imt main()

> cd 02-annotating-1lvm- o | et 1
170 for (i = 8; 1 < 10; i++) Bubble(i);
i;é) return @;

stanford e

intf("\n%d\n", sortlist[run + 1]);

Analyzing Hands-on Session |l

Are thererepeating patterns? The
entire Bubble(i) functionis being
called for 10 times.

Do we need the same stats 10

times?

Let us use m5_exit(M) at the end.

> cd @2-annotating-1lvm-

e e e el el el el el el el el i e e e e i e e e e e el i el sl i i i el el e i
3 [T T T O A O e O O = o S T T T (R T T o B T B B R S
SRR - T R R - (R R I- RN PO @O fa

stanford/optimized

Bubble(i)1
int i, 75
bInitarr(
top=grtelements;

f GEM5
m5_work_begi

i top>l

i=1;
whil i<top

if { sertlist[i] » sortlist[i+1]) {
j = sortlist[i];
sortlist[i] = sortlist[i+1];
sortlist[i+l] = j;

i=i+1;
top=top-1;
(sortlist[1] != littlest) || (sortlist[srtelements] != biggest)
printf { "Error3 in Bubble.\n"};

printf("\n%d\n", sortlist[run + 1]);

#ifdef GEMS

m5_work_end(8, @);

H
int main()
{
nt i;
for- (1 2] <-18; i++ bb1
urn

More on workload annotation

Refer to previously annotated benchmark programs such as NAS-Parallel-
Benchmarks [2], parsec [3] and gabps [4] for understanding more on

workload annotation.

[2] Bailey, David H., et al. "The NAS parallel benchmarks summary and preliminary results." Supercomputing'91: Proceedings of the

1991 ACM/IEEE conference on Supercomputing. IEEE, 1991.
[3] Christian Bienia et al. 2008. The PARSEC benchmark suite:
the 17th international conference on Parallel architectures and compilation techniques

https://doi.org/10.1145/1454115.1454128
[4] S. Beamer, K. Asanovi ¢, and D. Patterson,
https://arxiv.org/abs/1508.03619

In Proceedings of

characterization and architectural implications.
72-81.

(PACT '08). ACM, New York, NY, USA,

“The gap benchmark suite,” 2015. [Online]. Available:

e?cembd

> echo “Restoring the session: Accelerating Simulations”

House

There was a mistake in
the m5_work_begin()
and m5_work_end() slides/codes.

Thanks for pointing this out.

The set_se_workload never
exits when encounters a work
item.

We must explicitly
set board.exit_ on_work_items =
True (or wait for the next patch).

keeping

154 # Set whether to exit on work items for the se workload
155 board.exit_on _work_items = True

Starting simulation. ..
Starting simulation...

build/xg6/sim/simulate.cc:194: info: Entering event queLJe @ 1225239867.
build/X86/sim/simulate.cc:194: info: Enterdng event queue @ 7273898629.
Printing Statistics :: Wall Clock Time

build/X86/sim/mem_state.cc:443: info: Increasing stack size by one page.
Program: 8.88723891 s
Matrix Multiply: ©.00684789 s

Exiting @ tick 7285127588 because exiting with last active thread context.
-+ gem5 git:(stable) XI

2 mmeeeees Begin Simulation Statisties ----------
3 simSeconds 8.806048 # Number of seconds simulated (Second)
4 simTicks 6847858762 # Number of ticks simulated (Tick)
S finalTick 7273087632 # Number of ticks from beginning of simulaticn (restored from checkpoint
[simFreq 1200000000000 # The number of ticks per simulated second ((Tick/Second))
7 hostSeconds 5.53 # Real time elapsed on the hest (Second)
8 hostTickRate 1893265275 # The number of ticks simulated per host second (ticks/s) ((Tick/Second)
9 hostiMemory 1185672 # Number of bytes of host memory used (Byte)
7ee system.workload.inst.arm] # number of arm instructions executed (Count)
701 system.workload.inst.quiesce] # number of quiesce instructions executed (Count)
702
783 - - End Simulation Statistics ----------
784
785 - Begin Simulation Statistics ----------
786 simSeconds 8.e80012 # Number of seconds simulated (Second)
707 simTicks 11962359 # Number of ticks simulated (Tick)
708 finalTick 7285049991 # Number of ticks from beginning of simulation (restored from checkpoint:

709 simFreq 1000000000000 # The number of ticks per simulated second ((Tick/Second))

66 from gemS.simulate.exit event generators import default_exit_generator

158

1589 simulator = Simulator(board=board, on_exit event = {
168 ExitEvent.WORKEND : default_exit_generator()

161 ¥

162

cemd

Checkpoints in gem5

Simulations take a long time.

We need to be able to save and restore the state of simulationin gem5.

Checkpoints were originally designed to be used with AtomicSimpleCPU.

We can take checkpoints whenever we want.

We will use the EXIT Event: ExitEvent.CHECKPOINT.

It can be triggered by the function m5_checkpoint(M, N).

e?cembd

Checkpoints in gem5

The cpt file storesthe simulation
values of all the SimObjects.

What happens when we want to

switch components?

What happensto the cache when
you load a checkpoint?

cemd

[E- R r- AT SEN VI

.
@

o
[

R R R N e el e
PR R S v R R S PR S

28

[}
0

W@

B

@~ @ o

I}

Bl owoW W oW W W W

S
[EAr=a}

P
SRR R)

checkpoint generated: Thu Dec 30 ©92:24:09 2021

[board.processor.cores.core]
instCnt=1
_pid=4204067205

[board.processor.cores.core.xc.@]

regs=@ 327708 0 @ @ 0 @ 4204067295 255 @@ 0@ P 0 eABLDEAORPOREBEORE O
pendingSmi=false

smiVector=e

pendinghmi=false

nmivector=e

pendingExtInt=false

extIntVector=8

pendingInit=false

initVector=e

pendingStartup=false

startupVector-9

startadUp=Ffalse

pendingUnmaskableInt=false

pendingIPIs=@

IRRV=8

ISRV=@

apicTimereventScheduled=false

apicTimerEventTick=0

_status=e

floatRegs.i-2 D 0 2 A PG QOGO RRAPEODOBARAORBAORODRERORDOR
vecRegs=

vecPradRegs=

intRegs=0 © @ © 14@737488358656 @ P B @ 6 @D P O G O QO OB OBAEBEEREAD R
ccRegs=6 @ @ B @

_pc=4214668

_upc=@

_npc=4214668

_nupc=1

_size=8

[board.processor.cores.core.workload]
brkPoint=6135888
stackBase=140737488351232
stacksize-4096

maxStackSize=8388688
stackMin=148737488347136
nextThreadStackBase=148737479962624
mmapEnd=1408737354133584

[board.processor.cores.core.workload.vmalist]
size=2

Checkpointing the mm code

Let us checkpoint the simulation

before the matrix multiplication 7

for(int i =8 ; 1 <N ; i+s)

78 for(int j =8 ; j < N ; Jj++)
Sta rts 79 forfint k = 8 ; k < M ; k++)
° 8@ CLi103] += A[1][k] * B[k][]];
81
82 // end of ROI

We need to add an
m5_checkpoint(0, 0)

115 # restoring Previously Stored checkpoint.
116
117 from pathlib import Path

T h e Sim ulator m O d u |e C a n e a S i Iy iis simulator = Simulator(board=board, checkpoint_path=Path("checkpoint-dir")}
restorethe saved checkpoint.

124 # Creating the checkpoint directory.
125

H 126 if not os.path.exists(os.path.join{os.getcwd(), "checkpoint-dir")):
We a ISO nEEd to m Od Ify th e 127 os.makedirs(os.path.join(os.getcwd(), "checkpoint-dir™))
128
129 # Saving the cf“eckpoir‘t.l

runscript.

131 simulator.save checkpoint("checkpoint-dir™)

e?cembd

More on Checkpoints

C h eC k pOi nts Ca n b e ta ke n afte r a %ﬂz sfmu:_azor = Sli(mulazcljrihoirj;:::r:d::_

certain number of ticks have been o _—
118 Exiting @ tick {} because {}.".format(
119 simulator.get_current_tick(),
H imul . 1 i ().
S I m u Iated . ii‘) simulator.get_last exit event_cause(
122

123
124 simulator.save_checkpoint("checkpoint-dir")

Checkpointscan also be taken
periOdically- 178 for i in range(1@):

179 simulator.run{max_ticks = 18868ea)
12e
On Ca n also trigger i:; prlrféxiting @ tick {} because {}.".format(
183 simulator.get_current_tick(),
. 184 simulator.get_last_exit_event_cause(),
ExitEvent.USER_INTERRUPT and =
. . . 187
write a checkpointto continuethe = smsenmncaeine

simulation later.

e?cembd

Hands-on Session IlI: Restoring a checkpoint

In this assignment, you will be provided with a cpt file of the mm code.

This checkpoint file was taken after executing 1T ticks on the machine
defined by the runscript.

Your objective will be to:

11F # restoring Previously Stored checkpoint.
116
PY R h h k 1 11 from pathlib import Path
e Sto re t e C e C po I nt * 11 simulator = Simulator(board=board, checkpoint_path=Path("checkpoint-dir"))
119
[J E h 1OB 1 k 178 for i in range(1@):
X e C u te t e n eXt t I C S * 179 simulator.run{max_ticks = 18888828)
188
. 181 print(
¢ Save the CheCprInt. 182 "Exiting @ tick {} because {}.".format(
183 simulator.get current tick(),
184 simulator.get_last_exit_event_cause(),
18)
18¢ }
° 187
> Cd @3 - C hec pr]_nt S 138 simulator.run("”checkpoint-dir")
18

Fast-forwarding

Once we have our code annotated,

we fastforward our simulations.

gem5 supports switchable CPUs.

We use kvm or atomic cpu to
simulatethe non-essential regions
of the code. Then we switch to any
timing cpu.

Full system simulation

A

Simulation Stgrt

I
O

Boot

U

[sbin/init

RV

m>5 exit

.bashrc

Benchmark

A\

A4

stats.txt

Simulation End

Y
Using KVM cores

Sampling
We can sample essential parts of the simulationto find a representative
statistics for the whole workload.

We use a combination of both kvm/atomic and timing CPUs.

Periodic Samping

I I I I » Aggregated Stats
Simulation [77, v, TPV PIIIIN 7, l """ l I """ Simulation
Begin . : \ gt/ ok ok o o /5 . ! . ! : End
: Y Y - : : ; : i ’ 5
. kvm timing:
v v v v v v v v v v
T=0 t 2t 3t 4t (n-Ht (n-3)t (n-2)t (n-)t nt

[*] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck Tlmothy Sherwood, and Brad Calder. 2003. Using SimPoint for accurate and
efficient simulation. SIGMETRICS Perform. Eval. Rev. (June 2003), 318-319. https://doi.org/10.1145/885651.781076

55 cem>

gs Thank You!

cem>d

COMPUTER SCIENCE &

	Slide 1: Accelerating Simulations in gem5
	Slide 2: Outline of this session
	Slide 3: Hands-on Session: Matrix Multiply
	Slide 4: How do we make gem5 simulations faster?
	Slide 5: Creating the pre-requisite runscript
	Slide 6: Rationale Behind Accelerating Simulations
	Slide 7: gem5 EXIT Events
	Slide 8: Different types of EXIT Events in gem5
	Slide 9: Annotations
	Slide 10: The m5 instruction
	Slide 11: m5 Library Calls
	Slide 12: Annotation Example
	Slide 13: Recapping how to compile annotated code
	Slide 14
	Slide 15: Some m5 function calls in gem5
	Slide 16: Understanding the different m5 function calls
	Slide 17: Understanding the different m5 function calls
	Slide 18: Annotating a real-world workload.
	Slide 19: Hands-on Session II: Annotating real-world workload.
	Slide 20: Analyzing Hands-on Session II
	Slide 21: More on workload annotation
	Slide 22
	Slide 23: Housekeeping​
	Slide 24: Checkpoints in gem5
	Slide 25: Checkpoints in gem5
	Slide 26: Checkpointing the mm code
	Slide 28: More on Checkpoints
	Slide 29: Hands-on Session III: Restoring a checkpoint
	Slide 30: Fast-forwarding
	Slide 31: Sampling
	Slide 32: Thank You!

