
Accelerating
Simulations in gem5

A presentation by

Kaustav Goswami

Outline of this session

 We will first address why do we need to make simulations faster, and,

then we will see how can we make simulations faster.

 We will work together to create a runscript, that we will use throughout

this session.

 We will iterate over each of the techniques of accelerating simulations,

and work on several hands-on sessions.

 We will keep on modifying the runscript.

> cd materials/using-gem5/09-accelerating-simulations/

Hands-on Session: Matrix Multiply

• Go to the data-files directory.

• Compile the matrix multiply

(mm_base.cpp) program on your

host machine.

• Run the program with 100x100

matrix.

• Increase the size to 1000x1000.

What’s wrong?

> cd data-files/base

> g++ mm_base.cpp

How do we make gem5 simulations faster?

Annotating
workloads

Using
Checkpoints

Sampling

Creating the pre-requisite runscript

 We need to write a configuration script to execute the mm code.

 We will use the SimpleBoard in gem5 to do SE mode simulations.

 This will be a work along session.

 There are three TODOs marked in the runscript.

 Run the binary file with 100x100 elements.

> cd 00-prerequisite-runscript

Rationale Behind Accelerating Simulations

 We need a mechanism in gem5 for the simulated program can

communicate with the host machine.

 This allows us to manipulate the runscript.

 We can keep only essential statistics of the simulation.

gem5 EXIT Events

 EXIT events in gem5 allows us to communicate from the simulator to the

host.

 These are implemented as magic instructions or memory mapped I/O.

 There are different types of EXIT Events in gem5.

Different types of EXIT Events in gem5

 ExitEvent.EXIT

 ExitEvent.CHECKPOINT

 ExitEvent.FAIL

 ExitEvent.SWITCHCPU

 ExitEvent.WORKBEGIN

 ExitEvent.WORKEND

 ExitEvent.USER_INTERRUPT

 ExitEvent.MAX_TICK

Annotations

 We only care about important regions during the simulation.

 In other words, we have regions of interests or ROIs.

 How do we make gem5 understand ROIs?

The m5 utility!

The m5 instruction

 What is m5?

 m5 can be implemented as a magic instruction or as memory-mapped I/O

or MMIO.

 We add m5 library calls in the source code.

m5 Library Calls

 We need to identify ROIs.

 Look at the previous example,

but with annotations.

 We use m5_work_begin(M, N) at

the beginning and

m5_work_end(M, N) at the end

of the ROI.

 This resets the statistics which is

recorded in the m5out/stats.txt

file.

Annotation Example

 Go to data_files/annotated

 Open and review the mm_annotated.cpp file.

 Compile the mm_annotated.cpp

Wait! How do we compile the code?

Recapping how to compile annotated code

 The m5 utility must be compiled in

the util/m5.

 Change the GEM5_HOME variable.

 We need to modify the CFLAGS and

LDFLAGS in the Makefile.

 We need to include the m5ops.h

file from include/gem5/directory.

 Make

> cd gem5

Hands-on Session I: Modify the runscript

 Modify the original runscript to execute the mm_annotated binary.

 Print the total number of ticks.

 Print the EXIT Event.

 Look at the number of ticks in the m5out/stats.txt file.

> cd 01-modifying-runscript

Some m5 function calls in gem5

 m5_reset(M, N): It resets the stats file. A new section is generated in the

m5out/stats.txt file.

 m5_dump_reset_stats(M, N): It dumps the stats and resets the stats file.

 m5_work_begin(X, Y): It starts keeping stats.

 m5_work_end(X, Y): It stops keeping stats.

 m5_exit(M): It drops a ExitEvent.EXIT EXIT Event in the runscript.

> cd gem5/include/gem5

> code m5ops.h

Understanding the different m5 function calls

Fig. Executing without ROI annotations.

Fig. Executing with ROI begin and end.

Understanding the different m5 function calls

Fig. Executing with m5_reset_stats(0, 0).

Fig. Executing with m5_dump_reset_stats(0, 0).

Annotating a real-world workload.

 As computer architects, we must work with standard benchmark

programs to analyze the performance and requirements of the proposed

design.

 It is important to understand the characteristics of the workload.

 In this session, we will investigate the LLVM’s Stanford Benchmark Suite

[1].

[1] C. Lattner and V. Adve, "LLVM: a compilation framework for lifelong program analysis & transformation," International

Symposium on Code Generation and Optimization, 2004. CGO 2004., 2004, pp. 75-86, doi: 10.1109/CGO.2004.1281665.

Hands-on Session II: Annotating real-world workload.

 We will annotate Bubblesort in this

session.

 Download the benchmarks.

 Edit the Bubblesort.cpp file.

 Compile

 Simulate

> cd 02-annotating–llvm-

stanford

Analyzing Hands-on Session II

 Are there repeating patterns? The

entire Bubble(i) function is being

called for 10 times.

 Do we need the same stats 10

times?

 Let us use m5_exit(M) at the end.

> cd 02-annotating–llvm-

stanford/optimized

More on workload annotation

 Refer to previously annotated benchmark programs such as NAS-Parallel-

Benchmarks [2], parsec [3] and gabps [4] for understanding more on

workload annotation.

[2] Bailey, David H., et al. "The NAS parallel benchmarks summary and preliminary results." Supercomputing'91: Proceedings of the

1991 ACM/IEEE conference on Supercomputing. IEEE, 1991.

[3] Christian Bienia et al. 2008. The PARSEC benchmark suite: characterization and architectural implications. In Proceedings of

the 17th international conference on Parallel architectures and compilation techniques (PACT '08). ACM, New York, NY, USA, 72–81.

https://doi.org/10.1145/1454115.1454128

[4] S. Beamer, K. Asanovi ć, and D. Patterson, “The gap benchmark suite,” 2015. [Online]. Available:

https://arxiv.org/abs/1508.03619

> echo “Restoring the session: Accelerating Simulations”

Housekeeping​

 There was a mistake in

the m5_work_begin()

and m5_work_end() slides/codes.​

 Thanks for pointing this out.

 The set_se_workload never

exits when encounters a work

item.​

 We must explicitly

set `board.exit_on_work_items =

True` (or wait for the next patch).

Checkpoints in gem5

 Simulations take a long time.

 We need to be able to save and restore the state of simulation in gem5.

 Checkpoints were originally designed to be used with AtomicSimpleCPU.

 We can take checkpoints whenever we want.

 We will use the EXIT Event: ExitEvent.CHECKPOINT.

 It can be triggered by the function m5_checkpoint(M, N).

Checkpoints in gem5

 The cpt file stores the simulation

values of all the SimObjects.

 What happens when we want to

switch components?

 What happens to the cache when

you load a checkpoint?

Checkpointing the mm code

 Let us checkpoint the simulation

before the matrix multiplication

starts.

 We need to add an

m5_checkpoint(0, 0)

 The simulator module can easily

restore the saved checkpoint.

 We also need to modify the

runscript.

More on Checkpoints

 Checkpoints can be taken after a

certain number of ticks have been

simulated.

 Checkpoints can also be taken

periodically.

 On can also trigger

ExitEvent.USER_INTERRUPT and

write a checkpoint to continue the

simulation later.

Hands-on Session III: Restoring a checkpoint

 In this assignment, you will be provided with a cpt file of the mm code.

 This checkpoint file was taken after executing 1T ticks on the machine

defined by the runscript.

 Your objective will be to:

• Restore the checkpoint.

• Execute the next 10B ticks.

• Save the checkpoint.

> cd 03-checkpoints

Fast-forwarding

 Once we have our code annotated,

we fastforward our simulations.

 gem5 supports switchable CPUs.

 We use kvm or atomic cpu to

simulate the non-essential regions

of the code. Then we switch to any

timing cpu.

Sampling

 We can sample essential parts of the simulation to find a representative

statistics for the whole workload.

 We use a combination of both kvm/atomic and timing CPUs.

[*] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and Brad Calder. 2003. Using SimPoint for accurate and

efficient simulation. SIGMETRICS Perform. Eval. Rev. 31, 1 (June 2003), 318–319. https://doi.org/10.1145/885651.781076

Thank You!

	Slide 1: Accelerating Simulations in gem5
	Slide 2: Outline of this session
	Slide 3: Hands-on Session: Matrix Multiply
	Slide 4: How do we make gem5 simulations faster?
	Slide 5: Creating the pre-requisite runscript
	Slide 6: Rationale Behind Accelerating Simulations
	Slide 7: gem5 EXIT Events
	Slide 8: Different types of EXIT Events in gem5
	Slide 9: Annotations
	Slide 10: The m5 instruction
	Slide 11: m5 Library Calls
	Slide 12: Annotation Example
	Slide 13: Recapping how to compile annotated code
	Slide 14
	Slide 15: Some m5 function calls in gem5
	Slide 16: Understanding the different m5 function calls
	Slide 17: Understanding the different m5 function calls
	Slide 18: Annotating a real-world workload.
	Slide 19: Hands-on Session II: Annotating real-world workload.
	Slide 20: Analyzing Hands-on Session II
	Slide 21: More on workload annotation
	Slide 22
	Slide 23: Housekeeping​
	Slide 24: Checkpoints in gem5
	Slide 25: Checkpoints in gem5
	Slide 26: Checkpointing the mm code
	Slide 28: More on Checkpoints
	Slide 29: Hands-on Session III: Restoring a checkpoint
	Slide 30: Fast-forwarding
	Slide 31: Sampling
	Slide 32: Thank You!

