
gem5
Full System
Simulation

A presentation by

Maryam Babaie

OOO Action Item ☺

Launch codespace and run the following commands:

cd gem5

scons build/RISCV/gem5.opt –j14

Table of Contents

1. Intro. to gem5 Full System Mode

2. Basics of Booting up a Real System vs gem5

3. Creating Disk Image by Packer & QEMU

4. Extending/Modifying gem5 Resources

5. m5term Tool

▪ Example

Intro. to gem5 Full System Mode

What is full-system simulation?

Full-system Simulation (FS) encompasses the entire computer system:
• the processor cores
• peripheral devices
• memories
• network connections
• the complete software stack

• device drivers
• operating systems
• application programs

gem5 in Full System Mode

• In FS mode, gem5 simulates the entire hardware system, from the CPU to
the I/O devices.

• It helps gem5 execute binaries with no modifications.

• gem5's full system mode enables us to investigate the impacts of the
operating system.

What gem5 needs for FS?

gem5 Binary
Config file

Kernel Binary Disk Image Workloads Binaries

gem5/build/X86/gem5.opt
gem5-arm

x86-npb-benchmarks.py

A descriptive file of the hard drive,
the non-volatile memory to store
data, app, bootloader and OS, etc

core of an OS

gem5/build/X86/gem5.opt x86-npb-benchmarks.py --PATH-TO-KERNEL-BIN --PATH-TO-DISK-IMG --PATH-TO-WKL-BIN

Basics of Booting up a System

Booting Steps

BIOS Bootloader

BIOS (basic input/output system) software is stored on a non-volatile ROM chip on the motherboard.

BIOS perform hardware initialization during the booting process.

Bootloader

OS must be loaded into the working memory once the computer is starting up.

This is the job of a bootloader!

Immediately after a device starts, a bootloader is launched by a bootable medium like a hard drive.

The bootable medium receives information from the computer’s firmware (e.g. BIOS) about where the
bootloader is.

Booting Steps

BIOS Bootloader Kernel

Kernel

It's the core of an OS and generally has complete control over everything in the system.

It resides in the main memory.

Facilitates interactions between hardware and software components.

The most well-known one is the Linux kernel.

Device Tree Binary (DTB)

A device tree is a data structure describing the hardware components of a particular
computer so that the operating system's kernel can use and manage those components,
including:

• the CPUs
• the memory
• the buses
• the integrated peripherals.

Booting Steps

It’s a system and services manager,
the glue between kernel and the
application/user

BIOS Bootloader
Kernel

(linux)
Systemd

Serial getty
service

Log in as root
bashrc

exe
System is fully

booted.

The bashrc file is a script file
that’s executed when a user
logs in. The file contains a
series of configs for the
terminal session.

Booting Steps: gem5

BIOS Bootloader
 ernel

Systemd

Serial ge y
service

 og in as root
bashrc
exe

System is fully
booted.

1. gem5 does not simulate the BIOS/Bootloader. It directly loads kernel into the memory
and continues the booting.

2. Running “systemd” is optional, instead other user-defined init app/services can be used.

Why Disk Image Matters?

Once we are creating a disk image for our FS simulation, we need to make sure that proper files and
programs (in a matching ISA to the target) are loaded into the disk image, enabling this chart to
happen once you start the simulation.

BIOS Bootloader
 ernel

Systemd

Serial ge y
service

 og in as root
bashrc
exe

System is fully
booted.

Creating Disk Image by Packer & QEMU

Disk Image

• Disk image is a file containing the contents and structure of a data storage device, such as a hard disk
drive.

• A disk image is usually made by creating a sector-by-sector copy of the source medium, so it
replicates the structure and contents of a storage device independent of the file system.

• The file format may be an open standard, such as the ISO image format for optical disc images.

• The size of a disk image can be large because it contains the contents of an entire disk.

How to create your disk image?

• Using gem5 utils to create a disk image

• Using QEMU to create a disk image

• Using Packer to create a disk image

• Pros: it automates 2

• Cons: can only be used for X86 for automation, for ARM and RiscV you may want to do it with QEMU

Using Packer

• We use Packer with QEMU to automate the process of disk creation.

• QEMU is responsible for setting up a virtual machine and all interactions with the disk image

during the building process.

• installing Ubuntu Server to the disk image

• copying files from host machine to the disk image

• running scripts on the disk image after Ubuntu is installed.

• However, we will not use QEMU directly. Packer provides a simpler way to interact with QEMU

using a .json script.

Creating Disk Image with Packer

We’ll look into NAS parallel benchmarks (NPB) from gem5 resources.
NPB consists of a set of high performance computing (HPC) workloads.

Packer Script: npb.json

post-installation.sh

npb-install.sh

runscript.sh

How to create your kernel binary?

After this process succeeds, the compiled Linux binary, named vmlinux, can be found in the /linux.

If you need the binary in a different ISA than the host, you need to use cross-compilers.

(Link to full resource instructions)

https://gem5.googlesource.com/public/gem5-resources/+/refs/heads/stable/src/linux-kernel/README.md

Extending/Modifying gem5 Resources

Extending/Modifying a gem5 resource

Use “CustomResource”

Extending/Modifying a gem5 resource

Use “CustomResource”

How to get prebuilt resources from gem5 resources?

gem5 resources provides pre-built disk images and kernel binaries for several well-known benchmarks.

In the resources.json file, you can find a full list of these pre-built resources.

Full URL
to download

https://gem5.googlesource.com/public/gem5-resources
https://gem5.googlesource.com/public/gem5-resources/+/refs/heads/stable/resources.json

Creating a new gem5 resource

m5term Tool

m5term Tool

The m5term API allows the user to connect to the simulated console interface that full-system gem5 provides.

Building m5term

Simply, go to the directory that the API resides, and use “make” command:

cd gem5/util/term

make

Using m5term

The format to use m5term is as follows:

 ook for the following line while gem5’s running:
"system.platform.terminal: Listening for connections on port <port>"

gem5 defaults to using port 3456, if the port is not used.

m5term uses '~' as an escape character. If you enter the escape character followed by a '.', the m5term
program will exit.

<host> is the host that is running gem5.

<port> is the console port to connect to.

./gem5/util/term/m5term <host> <port>

m5term: Example

gem5/build/RISCV/gem5.opt materials/using-gem5/08-fullsystem/riscv-fs.py

Run gem5:

Run m5term in a separate terminal:

./gem5/util/term/m5term localhost <port>

In the terminal:

	Slide 1: gem5 Full System Simulation
	Slide 2: OOO Action Item
	Slide 3: Table of Contents
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

