
Cache Systems

A presentation by 

Marjan Fariborz



Before We Start

cd gem5

scons build/NULL_MESI_Two_Level/gem5.opt --default=NULL PROTOCOL=MESI_Two_Level

SLICC_HTML=True –j17



Cache Hierarchy in gem5

Cache 
Hierarchy

Mem
Ctrl

1. Classic cache: Simplified, faster, and less flexible

2. Ruby: Models cache coherence in detail

CPU

CPU
Mem
Ctrl



Outline

 Background on cache coherency

 Simple cache

• Coherency protocol in simple cache

• How to use simple cache

 Ruby cache

• Ruby components

• Example of MESI two level protocol



What is Coherency?

A coherence problem can arise if multiple cores have access to multiple copies of a data 

(e.g., in multiple caches) and at least one access is a write.

Core 0 Core 1 Core n

A

…

A

…

A

…

L1 
Cache



What is Coherency?

A coherence problem can arise if multiple cores have access to multiple copies of a data 

(e.g., in multiple caches) and at least one access is a write.

Core 0 Core 1 Core n

A

…

A

…

A

…

L1 
Cache

Write



What is Coherency?

A coherence problem can arise if multiple cores have access to multiple copies of a data 

(e.g., in multiple caches) and at least one access is a write.

 Coherency protocols:

1. Snooping

2. Directory

Core 0 Core 1 Core n

A

…

A

…

A

…

L1 
Cache

Write



Snoop Protocol

 Each processor snoops the bus to verify whether 

it has a copy of a requested cacheline. 

 Before a processor writes data, other processor 

cache copies must be invalidated or updated. 

 The coherence requests typically travel on an 

ordered broadcast network, such as a bus.

 This technique does not scale since it requires an 

all-to-all broadcast
https://www.morganclaypool.com/doi/pdf/10.2200/S00346ED1V01Y201104CAC016

https://www.morganclaypool.com/doi/pdf/10.2200/S00346ED1V01Y201104CAC016


Directory Protocol

 Directory tracks which processors have data when in 

the shared state.

• Local node where a request originates (interact with 

CPU cache)

• Home node where the memory location of an 

address resides 

• Remote node has a copy of a cache block, whether 

exclusive or shared (interact with CPU cache)

 A general interconnection network allows processors to 

communicate.

https://www.morganclaypool.com/doi/pdf/10.2200/S00346ED1V01Y201104CAC016

https://www.morganclaypool.com/doi/pdf/10.2200/S00346ED1V01Y201104CAC016


Simple Cache
Snooping protocol



Classic Cache: Coherence protocol (Snooping) 

Non-coherent 
crossbar

IO 
Crossbar

Coherent 
crossbar

L2Xbar

System 
crossbar

Snoop Filter



Classic Cache: Coherent Crossbar

• Has snooping request and response bus

• Each core uses the snooping bus to fetch or invalidate a 

cacheline



Classic Cache: Snoop Filter

• Instead of using a snooping bus to find a cacheline each Private cache 

has a snooping directory.

• It keeps track of which connected port has a particular line of data.

• Instead of snooping the caches it snoops the directory 



Example of system with simple cache 

Core Core Core

L1 cache L1 cache L1 cache

L2XBar

LLC LLC

SystemXBar

Memory 
controller

Memory 
controller

Memory 
controller



Classic Cache: 
Parameters 

 build/src/mem/cache/Cache.py

• build/src/mem/cache/cache.cc

• build/src/mem/cache/ noncoherent_cache.cc

 

 Parameters:

 Size, associativity, number of MSHR * entries, 

prefetcher, replacement policy, …

*Miss status handler register



Ruby
Directory based



Ruby Cache

1. Coherence Controller

2. Caches + Interface

3. Interconnect

CPU CPU CPU OtherDMA

DRAM 
Ctrl

DRAM 
Ctrl

“Classic” ports

“Classic” ports

Ruby

Cache & 
Memory

Coherency 
protocolInterconnect

M

S I



Ruby

L1 Cache 
controller

L1 Cache 
controller

L2 Cache 
controller

Directory 
controller

Directory 
controller

DMA 
Controller Any other 

Controller

On-chip 
interconnect



Ruby components

 Controller models (cache controller, directory controller)

 Controller topology (Mesh, all-to-all, and etc.)

 Network models

 Interface (classic ports)



Ruby Cache: Controller Models

L1/L2/L3 controller
DMA Controller
Directory Controller

SLICC 
state 

machine

In port
Message buffer

build/{build_target}/mem/ruby/protocol/(L1Cache/L2Cache/DMA/Directory)_Controller.*

Compiled

Out port
Message buffer

scons build/{ISA_Protocol}/gem5.opt --default=ISA PROTOCOL=Protocol SLICC_HTML=True

Code for controllers is 
“generated” via SLICC compiler



Ruby Cache: Example of Controller

L1 
cntrl

build/{build_target}/mem/ruby/protocol/L1Cache_Controller.py



Ruby Cache: Caches + Memory

L1 
cntrl



Ruby Cache: Caches + Memory

L1 
cntrl



Ruby Cache: Caches + Memory

L1 
cntrl



Ruby Cache: Caches + CPU

Ruby

CPU
Sequencer:

Converts gem5 packets to RubyRequests

New messages delivered to the “MandatoryQueue”

CPU Se
q

u
en

ce
r



Ruby Cache: Caches + CPU

Ruby

CPU

CPU Se
q

u
en

ce
r

C
la

ss
ic

 p
o

rt

Memory 
Controller

Memory 
Controller



Ruby Cache System

Mem_ctrl

Mem_ctrl

L1 
Cache

Directory

Directory

Network Classic Port

CPU Sequencer

L1 
Cache

CPU Sequencer



How to use Ruby

1. Create Controllers

2. Create Sequencers

3. Connect L1 controllers to sequencers

4. Connect Sequencers to CPUs

5. Connect Directories to memory controllers



Example

• Ruby- MESI Two level coherency protocol

• Private L1 cache

• 4 cpus, 4 private L1 cache

• 1 shared L2 cache

• 1 Memory channel



B U I L D

cd gem5

scons build/NULL_MESI_Two_Level/gem5.opt --default=NULL PROTOCOL=MESI_Two_Level –j17

R U N

cd ../

./gem5/build/NULL_MESI_Two_Level/gem5.opt materials/using-gem5/04-cache-models/simple_cache_run.py 2 

MESITwoLevel 512MB


	Slide 1: Cache Systems
	Slide 2: Before We Start
	Slide 3
	Slide 4: Outline
	Slide 5: What is Coherency?
	Slide 6: What is Coherency?
	Slide 7: What is Coherency?
	Slide 8: Snoop Protocol
	Slide 9: Directory Protocol 
	Slide 10: Simple Cache Snooping protocol
	Slide 11: Classic Cache: Coherence protocol (Snooping) 
	Slide 12: Classic Cache: Coherent Crossbar
	Slide 13: Classic Cache: Snoop Filter
	Slide 14: Example of system with simple cache 
	Slide 15: Classic Cache: Parameters 
	Slide 16: Ruby Directory based
	Slide 17
	Slide 18: Ruby
	Slide 19: Ruby components
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: How to use Ruby
	Slide 29: Example
	Slide 30

