
Plan for the week

Monday Tuesday Wednesday Thursday Friday

Introduction
• Getting started

with gem5:
using, develop,
and simulation

Using gem5
• gem5 standard

library

Using gem5
• General using
• gem5 models:

caches, CPUs,
memory

• Full system sim
• Accelerating

simulation

gem5 devel
• First SimObject,

params, events,
memory ops

• Instruction
execution

• Adding an
instruction

gem5 devel
• Classic caches
• Ruby and SLICC
• OCN and Garnet

• gem5’s GPGPU

Extra topics
• Contributing to

gem5

• Using other
simulators w/
gem5

• Whatever you
want!

Running Things on gem5

A presentation by

Maryam Babaie

OOO Action Item ☺

Launch codespace and run the following commands:

cd gem5

scons build/X86/gem5.debug –j14

Table of Contents

1. Intro. to Syscall Emulation Mode

2. The m5 Utility

i. Examples on m5 Utility

ii. SE mode uses hosts for most things

3. Cross-compiling

4. Traffic Generator

Intro. to Syscall Emulation Mode

Previously on gem5: how to build & use

Once compiled, gem5 can then be run using:

Example:

Syscall
Emulation

Mode

No interaction
with OS

Building with Scons:

scons build/{ISA}/gem5.{variant} -j {cpus}

build/{ISA}/gem5.{variant} [gem5 options] {simulation script} [script options]

build/X86/gem5.fast --outdir=simple_out configs/learning_gem5/part1/simple.py --l1i_size=32kB

What is Syscall Emulation?

Syscall Emulation (SE) mode does not model all the devices in a system.

SE mode is much easier to configure.

It focuses on simulating the CPU and memory system.

However, SE only emulates Linux system calls, and only models user-mode code.

When to use/avoid Syscall Emulation?

If you do not need to model the OS, and you want extra performance,
then you should use SE mode.

However, if you need high fidelity modeling of the system, or if OS interactions like
page table walks are important, then you should use FS mode.

The m5 Utility

The m5 Utility API

“m5ops” are the special opcodes that can be used in m5 to issue special instructions.

➢ Usage: checkpointing, exiting simulation, etc.

The m5 utility is the API providing these functionalities/options.

Options include:

• exit (delay): Stop the simulation in delay nanoseconds.

• resetstats (delay, period): Reset simulation statistics in delay nanoseconds; repeat this every period nanoseconds.

• dumpstats (delay , period): Save simulation statistics to a file in delay nanoseconds; repeat this every period nanoseconds.

• dumpresetstats (delay ,period): same as dumpstats; resetstats;

• Full list of options can be found here.

https://www.gem5.org/documentation/general_docs/m5ops/

How to use the m5 utility?

It is best to insert the option(s) directly in the source code of the application.

m5ops.h header file has prototypes for all the functionalities/options must be included.

The application should be linked with the appropriate m5 & libm5.a files.

C library for the utility.The command line utility

Building m5 and libm5

The m5 utility is in “gem5/util/m5/” directory.

To build m5 and libm5.a, run the following command in the gem5/util/m5/ directory.

Target ISA must be in lower case:
• x86
• arm
• thumb
• sparc
• arm64
• Riscv

This will generate libm5.a and m5 binaries in the util/m5/build/{TARGET_ISA}/out/ directory.

scons build/{TARGET_ISA}/out/m5

Building m5 and libm5

Note: if you are using a x86 system for other ISAs, you need to have the cross-compiler

Cross-compiler for each target ISA:

• arm : arm-linux-gnueabihf-gcc
• thumb : arm-linux-gnueabihf-gcc
• sparc : sparc64-linux-gnu-gcc
• arm64 : aarch64-linux-gnu-gcc
• riscv : riscv64-linux-gnu-gcc

See util/m5/README.md for more details.

Linking m5 to C/C++ code

After building the m5 and libm5.a as described, link them to your code:

1. Include gem5/m5ops.h in your source file(s).

2. Add gem5/include to your compiler’s include search path.

3. Add gem5/util/m5/build/{TARGET_ISA}/out to the linker search path.

4. Link against libm5.a.

Example 1: print in std out

Example1 code:
materials/using-gem5/03-running/example1/se_example.cpp

Config file:
materials/using-gem5/03-running/simple.py

gcc materials/using-gem5/03-running/example1/se_example.cpp -o exampleBin

./exampleBin

gem5-x86 materials/using-gem5/03-running/simple.py

Run workload:

Commands

Compile the code:

Run gem5:

Example 1

Include gem5/m5ops.h

Adding m5 util option

Adding m5 util option

Example 1: building x86 m5 utility

cd gem5/util/m5

scons build/x86/out/m5

gcc materials/using-gem5/03-running/example1/se_example.cpp -o exampleBin
-I gem5/include/
-lm5
-Lgem5/util/m5/build/x86/out

Example 1

Add gem5/include to your compiler’s include search path.

Note: if you try to locally run the output binary in your host, it will generate error:

Link against libm5.a.

Add gem5/util/m5/build/{TARGET_ISA}/out to the linker search path.

SE mode uses the host for many things.

SE mode treats a system call as one instruction for the guest.

Run gem5:

gem5/build/X86/gem5.debug --debug-flags=ExecAll materials/using-gem5/03-running/simple.py > debugOut.txt

Example 2: checking a directory

g++ materials/using-gem5/03-running/example2/dir_example.cpp -o exampleBin

gem5-x86 materials/using-gem5/03-running/simple.py

Commands

Compile the code:

Run gem5:

Example2 code:
materials/using-gem5/03-running/example2/dir_example.cpp

Config file:
materials/using-gem5/03-running/simple.py

SE mode uses the host for many things.

For things like creating/reading a file, it will create/read files on the host.

SE mode deos NOT implement many things!

• Filesystem

• Most of systemcalls

• I/O devices

• Interrupts

• TLB misses → Page table walks

• Context switches

• multiple threads

 You may have a multithreaded execution, but there's no context switches & no spin locks

Cross-compiling

Cross-compiling from one ISA to another.

Example: Cross-compiling

Host = X86 → Target: ARM64

(1) Build m5 utility for arm64

cd gem5/util/m5

scons arm64.CROSS_COMPILE=aarch64-linux- build/arm64/out/m5

(2) Cross-compile the program with m5 utility

aarch64-linux-g++ materials/using-gem5/03-running/example1/se_example.cpp -o exampleBin

-I gem5/include/ -lm5 -Lgem5/util/m5/build/arm64/out -static

(3) Run gem5

gem5-arm materials/using-gem5/03-running/simple.py

Example: Cross-compiling (Dynamic)

(2) Cross-compile the program with m5 utility

aarch64-linux-g++ materials/using-gem5/03-running/example1/se_example.cpp -o exampleBin

-I gem5/include/ -lm5 -Lgem5/util/m5/build/arm64/out

Also, you need to let gem5 know where the libraries associated with the guest ISA are located, using “redirect”.

(1) Build m5 utility for ARM, as shown before.

Example: Cross-compiling (Dynamic)

You should modify the config file (simple.py) as follows:

(3) Run gem5

gem5-arm materials/using-gem5/03-running/simple.py

Traffic Generator in gem5

Traffic Generator

A traffic generator module generates stimuli for the memory system.

Used for creating test cases for caches, interconnects, and memory controllers, etc.

P
o
r
t

Memory
System

Requestor Interconnect Responder

CPU

LLC

Load/
Store

Data

Traffic
generator

gem5’s Traffic Gen: PyTrafficGen

PyTrafficGen is a traffic generator module (SimObject) located in:
"gem5/src/cpu/testers/traffic_gen"

Used as a black box replacement for any generator of read/write requestor.

P
o
r
t

Memory
System

Requestor Interconnect Responder

PyTrafficGen

Rd/Wr
Req

Data

PyTrafficGen: Params

PyTrafficGen’s parameters allow you to control the characteristics of the generated traffic.

Parameter Definition

pattern The pattern of generated addresses: linear/ random

duration The duration of generating requests in ticks (quantum of time in gem5).

start address The lower bound for addresses that the synthetic traffic will access.

end address The upper bound for addresses that the synthetic traffic will access.

minimum period The minimum timing difference between two consecutive requests in ticks.

maximum period The maximum timing difference between two consecutive requests in ticks.

request size The number of bytes that are read/written by each request.

read percentage The percentage of reads among all the requests, the rest of requests are write requests.

Example3: PyTrafficGen

P
o
r
t

Rd/Wr
Req

Data

Memory System

Memory Ctrlr

Memory Interface

PyTrafficGen

Linear/Random

Duration

Rd/Wr %

Address Range

Types:
MemCtrl, HetMemCtrl, etc

Scheduling Policy
FCFS, FRFCFS

Device Type
DDRs, NVM, HBM, etc

Device Size

Command to run tests for this examples: ./materials/using-gem5/03-running/example3/traffGen_run.sh

Code: “src/mem”

Summary

• SE mode is easy to configure and fast for development purposes, if OS is not involved.

• m5 utility API is a useful tool for simulation behavior and performance analysis.

• Cross compilers should be used if the host and guest ISAs are different.

• Traffic generator can abstract away the details of a data requestor such as CPU for
generating test cases for memory systems.

	Slide 1: Plan for the week
	Slide 2: Running Things on gem5
	Slide 3: OOO Action Item 
	Slide 4: Table of Contents
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

