
Computer
architecture
simulation

A presentation by

Prof. Jason Lowe-Power

Outline

Computer systems research

Types of simulation

Nomenclature that we'll use

Different levels of simulation

Computer systems research/engineering

From Computer Architecture

Performance Evaluation Methods

by Lieven Eeckhout

Computer architecture simulation!

Why simulation?

Why simulation

Need a tool to evaluate systems that don’t exist (yet)

Performance, power, energy, etc.

Very costly to actually make the hardware

Computer systems are complex with many interdependent parts

Not easy to be accurate without the full system

Simulation can be parameterized

Design-space exploration

Sensitivity analysis

Alternatives to cycle-level simulation

Analytic models

Amdahl’s Law:

Queueing models:

Kinds of simulation

Functional simulation

Instrumentation-based

Trace-based

Execution-driven

Full system

Kinds of simulation

Functional simulation

Executes programs correctly. Usually no timing information

Used to validate correctness of compilers, etc.

RISC-V Spike, QEMU, gem5 “atomic” mode

Instrumentation

Often binary translation. Runs on actual hardware with callbacks

Like trace-based. Not flexible to new ISA. Some things opaque (caches)

PIN, CMP$im, NVBit

Kinds of simulation

Trace-based simulation

Generate addresses/events and re-execute

Can be fast (no need to do functional simulation). Reuse traces

If execution depends on timing, this will not work!

“Specialized” simulators for single aspect (e.g., just cache hit/miss)

Execution-driven

Functional and timing simulation is combined

gem5 and many others

gem5 is “execute in execute” or “timing directed”

Full system simulation

Components modeled with enough fidelity to run mostly unmodified apps

Often “Bare metal” simulation

All of the program is functionally emulated by the simulator

Often means running the OS in the simulator, not faking it

“Full system” simulators are often combine functional and execution-based

Nomenclature

Host: the actual hardware you’re using

Running things directly on the hardware:

Native execution

Guest: Code running on top of “fake” hardware

OS in virtual machine is guest OS

Running “on top of” hypervisor

Hypervisor is emulating hardware

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

Virtual machines

Hypervisor

Guest

Nomenclature

Host: the actual hardware you’re using

Simulator: Runs on the host

 Exposes hardware to the guest

Guest: Code running on simulated hardware

 OS running on gem5 is guest OS

 gem5 is simulating hardware

Simulator’s code: Runs natively

 executes/emulates the guest code

Guest’s code: (or benchmark, workload, etc.)

 Runs on gem5, not on the host.

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

Simulation

gem5/Simulator

Guest

Workload

Nomenclature

Host: the actual hardware you’re using

Simulator: Runs on the host

 Exposes hardware to the guest

Simulator’s performance:

 Time to run the simulation on host

 Wallclock time as you perceive it

Simulated performance:

 Time predicted by the simulator

 Time for guest code to run on simulator

App App

Operating Sys.

Hardware

Host

App App

Operating Sys.

Hardware

Host

Your system

gem5/Simulator

Guest

Simulation Workload

Tradeoffs

https://www.morganclaypool.com/doi/abs/10.2200/S00273ED1V01Y201006CAC010

Development time: time to make the simulator/models

Evaluation time: wallclock time to run the simulator

Accuracy: How close is the simulator to real hardware

Coverage: How broadly can the simulator be used?

What “level” should we simulate?

Ask yourself: What fidelity is required for this question?

 Example: New register file design

Often, the answer is a mix.

gem5 is well suited for this mix

 Models with different fidelity

 Drop-in replacements for each other

“Cycle level” vs “cycle accurate”

RTL simulation

RTL: Register transfer level/logic

 The “model” is the hardware design

 You specify every wire and every register

 Close to the actual ASIC

This is “cycle accurate” as it should be the same in the model and in an ASIC

Very high fidelity, but at the cost of configurability

 Need the entire design

 More difficult to combine functional and timing

Cycle-level simulation

Models the system cycle-by-cycle

Often “event-driven” (we’ll see this soon)

Can be quite accurate

 Not the exact same cycle-by-cycle as the ASIC, but similar timing

Easily parameterizeable

 No need for a full hardware design

Faster than cycle-accurate

 Can “cheat” and functionally emulate some things

Accelerating simulation

Parallelism

 Difficult to make cycle-level simulators parallel

 Can run many different simulations in parallel (throughput, not latency)

 May be able to get parallelism with multiple nodes? (See SST ☺)

Use FPGAs

 Quite useful for RTL simulation (See FireSim)

 Can be cycle-accurate

 Requires close to hardware design (RTL, HLS, etc.)

 Less flexible than CPU-based simulation

Summary & important terms

Functional simulation

 Just executing the code correctly. No timing.

Timing/execution-based simulation

 The timing of each operation is simulated with the functionality

Full system

 All guest code is run inside the simulator

Host vs guest

 Host: the thing on your desk. The simulator runs on the host.

 Guest: The application you’re simulating.

 The guest application/OS runs on the simulator.

	Slide 1: Computer architecture simulation
	Slide 2: Outline
	Slide 3: Computer systems research/engineering
	Slide 4: Why simulation?
	Slide 5: Why simulation
	Slide 6: Alternatives to cycle-level simulation
	Slide 7: Kinds of simulation
	Slide 8: Kinds of simulation
	Slide 9: Kinds of simulation
	Slide 10: Full system simulation
	Slide 11: Nomenclature
	Slide 12: Nomenclature
	Slide 13: Nomenclature
	Slide 14: Tradeoffs
	Slide 15: What “level” should we simulate?
	Slide 16: RTL simulation
	Slide 17: Cycle-level simulation
	Slide 18: Accelerating simulation
	Slide 19: Summary & important terms

