
Contributing
to gem5

A presentation by Bobby R. Bruce

With materials borrowed from

Andreas Sandburg!

Our Strategy

Learn

Use

Develop

Contribute

Improve

More interest

Why should I contribute to gem5?

You’re Nice!
- You’ve found a bug and have a fix.
- You’ve developed something useful and want

t share it.

Fame!

- Looks good on your CV.
- Companies contribute to gem5 all the time.Fortune!

- Get yourself known in the project.
- Good PR for your research to have it

incorporated in gem5.

“I’m scared”

Understandable…

Very few patches get in straight away. Most
patches are only accepted after requests for

changes.

We try our best to keep feedback as
constructive as possible (don’t take it

personally!).

The purpose of this session is to make it less
scary!

What can I contribute?

Some stuff we’re always needing more of:
• Tests
• Incorporating Syscalls for SE mode
• Unimplemented ISA instructions/extensions
• Useful stdlib components
• Useful gem5 resources
• Updating documentation on the gem5 website

• Even fixing typos is helpful!

Your own changes (bug fixes are very welcome!)

Check the Issue Tracker:
https://gem5.atlassian.net

https://gem5.atlassian.net/

Some useful resources

https://www.gem5.org/contributing

CONTRIBUTING.md in the gem5 directory

Sometimes using git is the biggest hurdle:

• https://git-scm.com/book/en/v2 : The git book
• https://dev.to/milu_franz/git-explained-the-basics-igc : I think this is a good tutorial but is very

GitHub-centric (we don't use GitHub for gem5). Still, going through it would be beneficial.
• https://wiki.spheredev.org/index.php/Git_for_the_lazy : Does a quick run through of the basic

Git commands. Can be good for reference.
• http://marklodato.github.io/visual-git-guide/index-en.html: A bit more complex but tries to

introduce the git data structures involved in git
• https://towardsdatascience.com/git-help-all-2d0bb0c31483: Another resource outlining both

the commands and explaining how git works.

https://www.gem5.org/contributing
https://git-scm.com/book/en/v2
https://dev.to/milu_franz/git-explained-the-basics-igc
https://wiki.spheredev.org/index.php/Git_for_the_lazy
http://marklodato.github.io/visual-git-guide/index-en.html
https://towardsdatascience.com/git-help-all-2d0bb0c31483

Where do I make changes?

➢ git clone https://gem5.googlesource.com/public/gem5-website

> cd gem5-website

Where do I make changes?

> git switch –c my-change

You are working on top of the gem5-website stable branch.

This is permitted in the gem5-website repository. If your patch is accepted the
website will be updated with that change ASAP.

You may work atop the “develop” branch if your change to the website should only
be published upon the next major gem5 release (good for next release
documentation updates).

What about the other gem5 repos?

gem5 Resources

https://gem5.googlesource.com
/public/gem5-resources

Build atop “stable” to make changes
for the current release.

Built atop “develop” to make changes
for the upcoming release.

gem5

https://gem5.googlesource.com
/public/gem5

Built atop ”develop” to make changes.
You cannot push to stable.

https://gem5.googlesource.com/public/gem5-resources
https://gem5.googlesource.com/public/gem5-resources
https://gem5.googlesource.com/public/gem5
https://gem5.googlesource.com/public/gem5

Making changes: CPP

Full style guide here: https://www.gem5.org/documentation/general_docs/development/coding_style/

High-level overview: https://www.gem5.org/contributing#making-modifications

Doxygen is highly recommended

http://doxygen.gem5.org

https://www.gem5.org/documentation/general_docs/development/coding_style/
https://www.gem5.org/contributing
http://doxygen.gem5.org/

Making changes: Python

> pip install black

> black <python file>

For variable/method/etc. Naming conventions please follow the PEP 8 naming
convention recommendations: https://peps.python.org/pep-0008/#naming-

conventions

While we try to enforce naming conventions across the gem5 project, we are aware
there are instances where they are not.

In such cases please follow the convention of the code you are modifying.

https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/

The biggest gotchas!

• Whitespace at the end of a line.
• Indentation not 4 space characters (please, no tabs)
• Lines too long (for CPP, no more than 79 characters!)

When in doubt, follow the style around you!

We have a style checker which should stop you committing if
you’ve done something wrong, but it’s not perfect and can be
side-stepped.

Using git

> git add <files to add>

> git commit

Commit message rules

We have some unique rules for gem5:

1. The header must lead with tags (see MAINTAINERS.yaml for a list of
tags).

2. Headers should be clear, short descriptions of what a patch will do.
3. Headers should be no longer than 65 characters
4. A blank line separates the header and the patch description.
5. Descriptions can span multiple paragraphs but lines should not

exceed 72 characters (this is lax rule, it’s acceptable to exceed this if
you’re quoting code, or including a URL).

6. If you're implementing a Jira request, cite the Jira URL.

View the Git Log

> git log

Example commit message

How do I push?

Pushing to Gerrit a little weird…

> git push origin HEAD:refs/for/stable%wip

“stable”, the branch you want to contribute to.

”%wip” means the patch is “Work In Progress”

You should all be getting this error

Create your Gerrit account and authenticate

Probably not! You need to register with Gerrit:

1. Create an account at https://gem5-review.googlesource.com.

2. Go to User Settings.

3. Select Obtain password (under HTTP Credentials).
A new tab will open explaining how to authenticate your machine to make
contributions to Gerrit. Follow these instructions and try pushing again.

https://gem5-review.googlesource.com/

Let’s try again

> git push origin HEAD:refs/for/stable%wip

You’re probably getting this error

Fix with:

> f=`git rev-parse --git-dir`/hooks/commit-msg ; mkdir -p $(dirname $f) ; curl -Lo $f
https://gerrit-review.googlesource.com/tools/hooks/commit-msg ; chmod +x $f

> git commit --amend --no-edit

> git log

Let’s try again

> git push origin HEAD:refs/for/stable%wip

Follow the link to your patch

Two Types of “Review”

1. Ordinary reviewer: Literally anyone with a gem5 Gerrit account.
2. Maintainer: An exclusive club, see MAINTAINERS.yaml for the list.

You need sign off by a reviewer and a maintainer to get a patch into gem5.

Sometimes a maintainer will give votes for both (as a reviewer and as a maintainer)
but we only recommend this for stuff the maintainer has high confidence in. Typically,
we like two separate people to sign off on a patch

Gerrit Code Review Process

Post change for review

Reviewers
happy?

Update change

Wait for reviews

Done

Yes

Submit change

Maintainer
happy?

No

Yes

No

Tests Pass?
Yes

No

You need the following:

- At least one reviewer to
approve

- At least one maintainer
- Our tests to pass

Testing overview

Jenkins Server

Compiler Tests (Daily)

Nightly Tests

Weekly Tests

Google Source

Presubmit (Kokoro)

Ex
ec

u
ti

o
n

 t
im

e

The most direct are the
“Presubmit” tests, you cannot
submit a to develop without these
passing

The rest are run at various times
on our Jenkins server:
https://jenkins.gem5.org

Let’s do something!

> cd gem5-resources

> git pull

Two routes here:
1. Create a toy change
2. Fix broken URLs: Some URLs and Docker files are using the wrong gem5 version! (v21-2

instead of v22-0).

> git switch stable

> git push origin HEAD:refs/for/stable%wip

	Slide 1: Contributing to gem5
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

