
gem5/SST 
Integration

A presentation by Hoa Nguyen



(Optional) gem5 as a Library: Hello, World!

 Compiling gem5 as a library,

scons build/RISCV/libgem5_opt.so -j17 --without-tcmalloc

 Compiling gem5 component,

cd ext/sst

docker run --rm --volume 

/var/lib/docker/codespacemount/workspace/:/workspaces -w `pwd` -it --

entrypoint /bin/bash gcr.io/gem5-test/sst-env

make -j4

 Running the simulation,

sst --add-lib-path=./ sst/example.py



gem5 as a Library: instantiation

Other Simulator System



gem5 as a Library: instantiation

Other Simulator System

Component

Component

Component

Component



gem5 as a Library: instantiation

Other Simulator System

SimObject

SimObject

SimObject

Component

Component

Component

Component

gem5 Component



gem5 as a Library: instantiation

Other Simulator System

SimObject

SimObject

SimObject

Component

Component

Component

Component

gem5 Component

?



gem5 as a Library: instantiation

Other Simulator System

SimObject

SimObject

SimObject

Component

Component

Component

Component

gem5 Component

Translation



gem5 as a Library

How to set up gem5 in another simulator?

• Step 1: Setting up the gem5 Python environment.

• Need to manually import the m5 module.

• Step 2: Reading the gem5 Python system configuration file.

• This includes setting up the communication data path for gem5 

and the other simulator.

• Notes:

• m5.instantiate() must be called before any simulation.

• m5.simulate(K) runs the gem5 simulation for K ticks.



gem5 as a Library: simulation

Other Simulator System

gem5 system CLOCK



gem5 as a Library: simulation

For every external simulator clock tick:

external_simulator.advance_to_next_event()

gem5_system.advance(n_ticks)

where n_ticks = time difference between this event and previous event of 

the external simulator



Case study: gem5/SST integration

SST: Structural Simulation Toolkit

http://sst-simulator.org/

• A highly parallelized discrete-

event simulator.

• Consists of,

SST-Core (the simulator)

SST-Elements (components)

SST-Macro

http://sst-simulator.org/


SST: Brief Overview

 Simulation objects,

• SST::Component (similar to 

gem5::SimObject)

• SST::Link (allows two 

components to send SST::Event 

to each other)

• Bidirectional

• SST::Event (similar to 

gem5::Event)

• Sent via SST::Link



SST: Brief Overview

 Parallelization,

• SST partitions components to 

multiple partitions.

• Communication between parti

tions are done via MPI.

• The partitioning process can 

be done automatically or 

manually.



gem5/SST Integration

External Simulator Port

External Simulator Port



gem5/SST Integration

External Simulator Port

External Simulator Port

Packet 
Translation

Packet 
Translation



gem5/SST Integration

 gem5 provides,

• OutgoingRequestBridge: a Request port sending requests to external 

components.

• SSTResponderInterface: an interface for a Response port for an external 

component.

 gem5 Component is an SST::Component, which has multiple 

SSTResponder's implementing the SSTReponderInterface.

 The packet translation happens within the gem5 Component.



gem5/SST Integration



gem5/SST Integration

 Example (arm and RISC-V),

• gem5 as an SST component: gem5/ext/sst/

• SST system configuration: gem5/ext/sst/sst/example.py

• gem5 system configuration: gem5/configs/example/sst/riscv_fs.py

 System setup,

• SST drives the simulation.

• One gem5 component, which consists of 4 detailed cores.

• Cache and memory are SST::Components from SST-Elements.



gem5/SST Integration

 System setup,

• SST drives the full-system simulation.

• One gem5 component, which consists of 4 detailed cores.

• Cache and memory are SST::Components from SST-Elements.

 Limitations,

• gem5 cores wake up frequently per CPU clock tick.

• The cores are frequently synchronized due to cache coherency 

protocol.

• Needs work for block devices to work.



gem5/SST Integration

 However, we can set up multiple-node simulation.

 How?

• Having multiple gem5 components, each represents a node.

• Each gem5 component is in a different partition.

• Communication between gem5 instances can be done via gem5 

PIO devices.

 Why?

• There are more parallelism at the node granularity.



Other Notes

 SST has its own Python environment, so gem5 within SST should not 

initialize the Python environment again.

 However, the m5 and gem5 libraries should be manually imported.

 m5 library has a function to find SimObject given a SimObject name.

• Useful for finding the owner for a port in an external simulator.



Documentation

• Setup,

 gem5/ext/sst/README.md

 gem5 interfaces for communication with an external simulator,

 gem5/src/sst

 gem5 as a component in an external library,

 gem5/ext/sst

• Compiling the bootloader + kernel + custom workload in a binary,

 https://gem5.googlesource.com/public/gem5-

resources/+/refs/heads/stable/src/riscv-boot-exit-nodisk/README.md

https://gem5.googlesource.com/public/gem5-resources/+/refs/heads/stable/src/riscv-boot-exit-nodisk/README.md
https://gem5.googlesource.com/public/gem5-resources/+/refs/heads/stable/src/riscv-boot-exit-nodisk/README.md

	Slide 1: gem5/SST Integration
	Slide 2: (Optional)  gem5 as a Library: Hello, World!
	Slide 3: gem5 as a Library: instantiation
	Slide 4: gem5 as a Library: instantiation
	Slide 5: gem5 as a Library: instantiation
	Slide 6: gem5 as a Library: instantiation
	Slide 7: gem5 as a Library: instantiation
	Slide 8: gem5 as a Library
	Slide 9: gem5 as a Library: simulation
	Slide 10: gem5 as a Library: simulation
	Slide 11: Case study: gem5/SST integration
	Slide 12: SST: Brief Overview
	Slide 13: SST: Brief Overview
	Slide 14: gem5/SST Integration
	Slide 15: gem5/SST Integration
	Slide 16: gem5/SST Integration
	Slide 17: gem5/SST Integration
	Slide 18: gem5/SST Integration
	Slide 19: gem5/SST Integration
	Slide 20: gem5/SST Integration
	Slide 21: Other Notes
	Slide 22: Documentation

