
Running (AMD) GPU
experiments in gem5

Matthew D. Sinclair

University of Wisconsin-Madison, AMD Research

sinclair@cs.wisc.edu

mailto:sinclair@cs.wisc.edu

2

Disclaimers

• #1: Currently gem5 only supports AMD GPUs

• The concepts are similar to NVIDIA GPUs though

• #2: Currently gem5 only supports GPGPU workloads (no Vulkan,

OpenGL)

3

Contributors

• AMD Research: Brad Beckmann, Alex Dutu, Tony Gutierrez, Michale

LeBeane, Matthew Poremba, Brandon Potter, Sooraj Puthoor, &

many more

• UW-Madison: Anushka Chandrashekar, Gaurav Jain, Charles

Jamieson, Jing Li, Kyle Roarty, Mingyuan Xiang, Bobbi Yogatama, &

others

• Some slides based on content presented by these folks previously

4

Compiling gem5 GPU Model

docker pull gcr.io/gem5-test/gcn-gpu:v22-0

cd gem5

docker run --rm --volume
/var/lib/docker/codespacemount/workspace/:/workspaces -w `pwd`

gcr.io/gem5-test/gcn-gpu:v22-0 scons build/GCN3_X86/gem5.opt –j17

• This will take ~20 minutes to compile – we’ll come back to them

• Commands also in 11-gpu/README.md

5

Graphics Processing Units (GPU)

Tesla S870

• Killer app for parallelism: graphics (3D games)

6

GPU Evolution

• New killer app: Machine Learning

• … and crypto

Disclaimer: this talk will not teach you how to run crypto in gem5

7

Learning Outcomes

• By the end of this class attendees will be able to:

- Understand the basics of GPU architecture and programming.

- Understand the basics of how (AMD) GPUs are implemented in

gem5.

- Compile the gem5 GPU model (and describe how and why docker
support is provided).

- Run basic GPU tests on the (AMD) GPU model.

- Compare and contrast the results of different register allocation

schemes.

- Identify what additional resources gem5-resources provides.

8

Outline

• Background: GPU Architecture & Programming Basics (20-30

minutes)

• Modeling & Using GPUs in gem5 (1 hour)

• Running GPU programs in gem5 (1 hour)

9

Flynn’s Taxonomy
• Focus: Data parallel workloads

• Independent, identical computation on multiple data inputs

• MIMD (Multiple Instruction, Multiple Data):

• Split independent work over multiple processors

• Subcategory: SPMD (Single Program, Multiple Data)

• Only if work is identical (same program)

• SIMD (Single Instruction, Multiple Data):

• Split identical, independent work over multiple execution units

• More efficient: eliminate redundant fetch/decode vs. SPMD/MIMD

• Use single PC and single register file

10

Flynn’s Taxonomy (Cont.)

• SIMD’s cousin: SIMT (Single Instruction, Multiple Thread)

• Split identical, independent work over multiple lockstep threads

• One PC for group of lockstep threads, but multiple register files

• This is what GPUs do today

• Work well for streaming applications

• Sidenote:

• People use SIMT and SIMD somewhat interchangeably

• They do have differences though

11

Execution Model Comparison

MIMD/SPMD SIMD/Vector SIMT

x86 SSE/AVX GPUs
Multicore

CPUs
Example

Pros

Cons

More general:

better support

for TLP

Able to mix

serial and

parallel code

Easier to program,

Scatter & Gather

operations

Inefficient for

data parallelism

Gather/Scatter

implementations

more complicated

Divergence kills

performance

12

GPUs & Memory

• GPUs optimized for streaming computations

• Thus, we have a lot of streaming memory accesses

• DRAM: 100’s of GPU cycles per memory access

• How to hide this overhead & keep the GPU busy in the meantime?

• Traditional CPU approaches:

• Caches → Need spatial/temporal locality

• Streaming applications have little reuse

• OOO/Dynamic Scheduling → Need ILP

• Too power hungry, diminishing returns for GPU applications

• Multicore/Multithreading/SMT → need independent threads ✓

X

X

13

Multicore/Multithreading/SMT on GPUs

• Group SIMT “threads” together on a GPU “core”

• SIMT threads are grouped together for efficiency

• Loose analogy: SIMT thread group ≈ one CPU SMT thread

• Difference: GPU threads are exposed to the programmer

• Execute different SIMT thread groups simultaneously

• On a single GPU “core” per-cycle SIMT thread groups swaps

• Execute different SIMT thread groups on different GPU “cores”

GPU “Core”GPU “Core”

…

GPU

14

GPU Component Names

GPU “Core”GPU “Core”

…

GPU

Thread Group

CUDA/HIP OpenCL

Thread Work-item

WavefrontWarp

Thread

Block/CTA
Workgroup

Grid

(Kernel)

NDRange

(Kernel)

15

Programming GPUs

• Program it with CUDA, HIP, or OpenCL

• CUDA = Compute Unified Device Architecture

• NVIDIA’s proprietary solution

• OpenCL = Open Computing Language

• Open, industrywide standard

• HIP = Heterogeneous interface for portability

• AMD’s open solution, its successor to OpenCL

• OpenCL partially supported inside HIP kernels

• All: Extensions to C

• Perform a “shader task” (a snippet of scalar computation) over many elements

• Internally, GPU uses scatter/gather and vector mask operations

• Other solutions:

• C++ AMP (Microsoft), OpenACC (extension to OpenMP)

16

GPU Hardware Overview

GPU “Core”GPU “Core”

…

GPU

/ HBM

17

Compute Unit (CU) – The GPU “Core”

• Job: run thread blocks/workgroups

• Contains multiple SIMT units (4 in picture below)

• Each cycle, schedule one SIMT unit

• SIMT unit: runs wavefronts/warps

• Run the threads

• AMD: size N (e.g., 10) wavefront instruction buffer

• 4 cycles to execute one wavefront

• Average: fetch and commit 1 wavefront/cycle

/ HBM

18

How do we do efficient memory access?
• Pseudo CUDA for contiguous access:

• Pseudo CUDA for non-contiguous access:

a+0 a+4 a+8

(hardware overhead to dynamically coalesce memory access…

 and collect the operands)

Instead issue one access

A[n:n+16*4]

gpu void add(int *a, int *b, int *c) {

 c[tid] = a[tid*2] + b[tid];

}

a+0 a+8 a+16

Instead issue two access

A[n :n+16*4],
A[n+16*4:n+32*4]

a+16*4

a+32*4

gpu void add(int *a, int *b, int *c) {

 c[tid] = a[tid] + b[tid];

} L1
Cache

Lane 0 Lane N-1

Coalescer

19

How many ports should my L1 have?
• Warp: 32 Threads, 32 Load/Store Ports to L1 Cache?

• Non-starter, even banking doesn’t solve the problem…

• Should 32 cache misses cause 32 requests to memory!?

• Aside: AMD hardware uses wavefronts (often size 64 threads)

• Common case:

• All threads in warp/wavefront access same cache block(s)

• Addressing coalescing:

• Dynamically combine addresses generated from each lane

• Reduces in-flight memory requests, helps DRAM b/w, important

20

git remote add upstream https://github.com/gem5bootcamp/gem5-bootcamp-env

git fetch upstream

git reset –hard upstream/main

rebuild container

docker pull gcr.io/gem5-test/gcn-gpu:v22-0

 cd gem5

 docker run --rm --volume

/var/lib/docker/codespacemount/workspace/:/workspaces -w `pwd` gcr.io/gem5-
test/gcn-gpu:v22-0 scons build/GCN3_X86/gem5.opt –j17

https://github.com/gem5bootcamp/gem5-bootcamp-env

21

SIMT Unit – A GPU Pipeline

• Similar to a wide CPU pipeline, except only fetch 1 instr.

• 16-wide physical ALU – why not 64?

• 64 KB register state/SIMD unit

• Much bigger (~64X) than CPUs – why?

• Addressing coalescing key to good performance

• Each thread potentially fetches a different piece of data

• 64 separate addresses for AMD, 32 for NVIDIA (tradeoffs)

22

Address Coalescing

• 32-64 memory requests issued per memory instruction

• Common case:

• All threads in warp/wavefront access same cache block(s)

• If not: divergence

• Coalescing:

• Merge many thread’s requests into a single cache block request

• Reduces number of in-flight memory requests

• Helpful for reducing bandwidth to DRAM

• Very important for performance

23

Memory System Optimizations

• GPUs are throughput-oriented processors

• CPUs are latency-oriented

• Goal:

• Hide the latency of memory accesses with many in-flight threads

• Memory system needs must handle lots of overlapping requests

• But what if not enough threads to cover up the latency?

24

Caches to the Rescue?

• Comparison: Modern CPU and GPU caches

CPU GPU

L1 D$ capacity 64 KB 32 KB

Active threads/work-items sharing L1 D$ 2 2560

L1 D$ capacity/thread 32 KB 12.8 bytes

Last level cache (LLC) capacity 8 MB 4 MB

Active threads/work-items sharing LLC 16 163840

LLC capacity/thread 0.5 MB 25.6 bytes

GPU caches can’t be used in the same way as CPU caches

25

GPU Caches

• Goal: maximize throughput, not latency (unlike CPUs)

• Traditionally little temporal locality to exploit

• Also little spatial locality, since coalescing logic handles most of it

• L1 cache:

• Coalesce requests to same cache block by different threads

• Keep around long enough for all threads in warp/wavefront to hit

• Once

• Ultimate goal: reduce number of requests sent to DRAM

• L2 cache: DRAM staging buffer + some instruction reuse

• Ultimate goal: tolerate spikes in DRAM bandwidth

• Use specialized memories (e.g., scratchpad, texture) for any temporal locality

26

Outline

• Background: GPU Architecture & Programming Basics (20-30

minutes)

• Modeling & Using GPUs in gem5 (1 hour)

- What libraries are required?

- What support is provided?

- Where is GPU code?

- How to compile GPU model in gem5?

• Running GPU programs in gem5 (1 hour)

27

MEM

CUCU
CUCU

CP
X86

Core
x86

Core

hardware

models

CPU GPU

GCN3 ELF +

Code metadata

x86 ELF
HIP

Libraries

ROCr

ROCt

ROCk

HIProcBLAS, …MIOpen
App

Source

User space

OS kernel space

This is what a GPU app running in gem5 requires

gem5 runs or models all of this

28

Alternate View

OpenCL HIP

MIOpen

rocBLAS (+ Tensile)

hipBLAS

ROCm

Getting all of this installed correctly can be difficult!

29

AMD’s ROCm Stack

• ROCm == Radeon Open Compute

• ROCm stack

• Runtime layer – ROCr

• Thunk (user-space driver) – ROCt

• Kernel fusion driver (KFD) – ROCk

• MIOpen – machine intelligence (ML) library

• rocBLAS – BLAS (e.g., GEMMs) library

• HIP – GPU programming language (roughly: LLVM backend, clang front-end)

• …

• gem5 simulates all of these except ROCk, which it emulates in SE mode

30

Creating Portable gem5 Resources

• Docker container

• Properly installs ROCm software stack

• Publicly Available!

• Integrated into gem5 repo: https://gem5.googlesource.com/

• Added bmks & doc. in gem5-resources [Bruce ISPASS ‘20 Best Paper Nom.]

• Used in continuous integration to ensure GPU support is stable

• Strongly suggest building applications requiring ROCm with docker

• All of our experiments today will assume this docker support

• docker pull gcr.io/gem5-test/gcn-gpu:v22-0

gem5 GPU docker

For gem5 v22.0

https://gem5.googlesource.com/

31

Outline

• Background: GPU Architecture & Programming Basics (20-30

minutes)

• Modeling & Using GPUs in gem5 (1 hour)

- What libraries are required?

- What support is provided?

- Where is GPU code?

- How to compile GPU model in gem5?

• Running GPU programs in gem5 (1 hour)

32

Current Support

• ROCm supported in gem5: ROCm v4.0

• SE mode vs. FS mode:

• SE mode is well supported on stable – today’s focus

• FS mode was just released on develop with 22.0, but won’t discuss today

• AMD GPU support

• GCN3 (gfx801 – APU, gfx803 – dGPU)

• Vega (gfx900 – dGPU, gfx902 – APU, partial support)

• Vega is newer model than GCN3

• If you want to run on the VEGA model in gem5, you need to compile for the appropriate
gfx9* model

• Standard library: currently not supported – use apu_se.py and gpufs.py instead

• Currently only supports Ruby

• Today we will focus on GCN3 and gfx801, because they’re most tested

33

GPUFS Support

Simulates all driver calls + able to support newer ROCm versions “out of the box”

34

APU vs. dGPU

• APU = CPU+GPU have a single, unified address space

• dGPU = CPU and GPU have separate, discrete address spaces

• Sidenote: SQC = GPU L1 I$, TCP = GPU L1 D$, TCC = unified GPU L2$

CU

TCP

CU

TCP

CU

TCP

CU

TCP

SQC

TCC

CPU0 CPU1

CPU I-Cache

L1D L1D

L2

Directory
Memory

Controller
Memory

GPU

CPU

Scalar Cache

35

Outline

• Background: GPU Architecture & Programming Basics (20-30

minutes)

• Modeling & Using GPUs in gem5 (1 hour)

- What libraries are required?

- What support is provided?

- Where is GPU code?

- How to compile GPU model in gem5?

• Running GPU programs in gem5 (1 hour)

36

Key GPU Code Locations
• Gem5  top-level directory

• src/

• arch/amdgpu/

• gcn3/ GCN3 specific code (e.g., GCN3 ISA)

• vega/  Vega specific code (e.g., Vega ISA)

• gpu-compute/  GPU core (CU) model
• Instruction buffering, Registers, Vector ALUs

• mem/protocol/ APU memory model

• mem/ruby/  APU memory model
• TCP, TCC, SQC (Ruby based)

• dev/hsa/  HSA device models
• configs/

• example/  apu_se.py sample script (also gpufs.py script)

• Connects multiple CUs, caches, etc. together to create overall GPU model

• ruby/  APU protocol configs

37

How does a GPU Kernel Actually Run?

• User space SW talks to GPU via ioctl()

• ROCk is emulated in gem5 (SE mode only)

• Handles ioctl commands

• CP (Command Proc) frontend

• Two primary components:

• HSA packet processor (HSAPP)

• Workgroup dispatcher

• Runtime creates soft HSA queues

• HSAPP maps them to hardware queues

• HSAPP schedules active queues

• Runtime creates and enqueues AQL packets

• Packets include:

• Kernel resource requirements

• Kernel size

• Kernel code object pointer

• More…

MEM

CU

GPU
HSAPP

Dispatcher

HW Model Components

ROCk

User Space SW

ioctl()gpu_compute_driver.[hh|cc]

dev/hsa/hsa_packet_processor.[hh|cc]

dev/hsa/hw_scheduler.[hh|cc]

CP

Head ptr

Tail ptr

HSA software queue

HW queue

HW Queue
Scheduler

hsa_packet.hh

hsa_queue.hh

kernels work-
groups

38

Dispatching Kernels to CUs

• Kernel dispatch is resource limited

• WGs are scheduled to CUs

• Dispatcher tracks status of in-flight/pending kernels

• If a WG from a kernel cannot be scheduled, it is enqueued until resources become available

• When all WGs from a task have completed, the dispatcher frees CU resources and notifies the host

1) Try to dispatch WGs on every cycle

2) Pick oldest AQL pkt in queue; if it has
unexecuted WGs, try to schedule them on a CU

3) Dispatch WG to CU if there are enough WF
slots, enough GPRs, and enough LDS space

Shader

CU CU CU

GPU Dispatcher

AQL Pkt

AQL Pkt

-

HSA Queue Entry
(AQL kernel)

0

1

2

3

ID

AQL Pkt

Grid
wg(0, 0, 0) wg(1, 0, 0)

wg(0, 1, 0) wg(1, 1, 0)

dispatcher.[hh|cc]

hsa_queue_entry.hh

39

How does an instruction actually run through GPU?

• Pipeline stages

• Fetch: fetch for dispatched WFs - fetch_stage.[hh|cc] and fetch_unit.[hh|cc]

• Scoreboard: Check which WFs are ready - scoreboard_check_stage.[hh|cc]

• Schedule: Select a WF from the ready pool - schedule_stage.[hh|cc]

• Execute: Run WF on execution resource - exec_stage.[hh|cc]

• Memory pipeline: Execute (local data store) LDS/global memory operation

• local_memory_pipeline.[hh|cc]

• global_memory_pipeline.[hh|cc]

• scalar_memory_pipeline.[hh|cc]

Fetch Scoreboard Schedule Execute
Memory
pipeline

Fetched WFs Ready WFs Executing WFs

Local memory (LDS)

Global memory (TCP)
Scalar memory

40

Outline

• Background: GPU Architecture & Programming Basics (20-
30 minutes)

• Modeling & Using GPUs in gem5 (1 hour)

- Where is GPU code?

- What libraries are required?

- What support is provided?

- How to compile GPU model in gem5?

• Running GPU programs in gem5 (1 hour)

41

Compiling gem5’s GCN3 GPU model

cd gem5

 docker run --rm --volume
/var/lib/docker/codespacemount/workspace/:/workspaces -w `pwd` gcr.io/gem5-

test/gcn-gpu:v22-0 scons build/GCN3_X86/gem5.opt –j17

Use the v22.0 gem5 docker we pulled earlier Build the GCN3 model

Hopefully this has compiled for everyone already

42

Outline

• Background: GPU Architecture & Programming Basics (20-30

minutes)

• Modeling & Using GPUs in gem5 (1 hour)

• Running GPU programs in gem5 (1 hour)

43

Running Square

• What is square?

• Simple vector addition program – each thread i does C[i] = A[i] + B[i]

• Ideally suited to running on a GPU (perfectly parallel)

• Running:

docker run --rm --volume
/var/lib/docker/codespacemount/workspace/:/workspaces -w `pwd`
gcr.io/gem5-test/gcn-gpu:v22-0 gem5/build/GCN3_X86/gem5.opt
gem5/configs/example/apu_se.py -n 3 -c
gem5-resources/src/gpu/square/bin/square

3 threads because ROCm uses multiple processes

Should take < 5 minutes to run in gem5

Path to square binary

base config script for running GPU models (in SE mode)

44

Comparing register allocation schemes

• GPU models have support for multiple register allocation schemes

• To specify: --reg-alloc-policy=[dynamic, simple] on command line

• Simple policy: run 1 wavefront per CU at a time

• Few stalls and contention

• Dynamic policy: run up to max (40) wavefronts per CU at a time if registers
are available

• But more stalls and contention

• Your mission: run square with each policy, compare them!

• Use –d to redirect output to a different folder (default: m5out)

• Based on your results, which policy do you think runs by default?

45

GPU Stats

• GPU stats are different from CPU ones – specific counters for GPU

shaderActiveTicks: how
long each CU was

running this app

46

Comparing simple and dynamic register allocation

• Simple: 1151851499 ticks

• Dynamic: 1155814499 ticks

• Dynamic slightly (0.5%) worse!

• Dependence tracking in gem5 GPU model is not perfect

• Area where new research contributions are needed :)

• Extra contention causes more stalls

47

Dynamic Register Allocation Not Always Better

0

0.5

1

1.5

2

2.5

3

3.5

N
ro

m
a
li
z
e
d

 S
p

e
e
d

u
p

Static Register Allocation Dynamic Register Allocation

We patched this with smarter dependence tracking, but other problems may exist

48

Running Multi-Kernel GPU Applications

• Many GPU applications (unlike square) run for multiple kernels

• How to tell the stats for these different kernels apart?

• One option: m5ops – dump_reset_stats between each kernel

• For this, we will use gem5-resources/src/gpu/pannotia/bc

• BC already has support for m5_work_begin and m5_work_end (including in
Makefile)

• So you don’t need to worry about adding this

• We want to add a dump_resetstats after each kernel completes

49

Adding m5ops Steps

• Compile m5ops (for x86)

 cd gem5/util/m5

 docker run --rm --volume
/var/lib/docker/codespacemount/workspace/:/workspaces -w
`pwd` gcr.io/gem5-test/gcn-gpu:v22-0 scons
build/x86/out/m5

50

Adding m5ops Steps

• Add dump_reset_stats calls to BC + Compile BC:

 cd gem5-resources/src/gpu/pannotia/bc

 // add m5ops calls to BC.cpp

 // change MAX_ITERS from 150 to 2 to speedup simulation

 docker run --rm --volume
/var/lib/docker/codespacemount/workspace/:/workspaces -w `pwd`
gcr.io/gem5-test/gcn-gpu:v22-0 bash -c "export
GEM5_PATH=/workspaces/gem5-bootcamp-env/gem5 ; make gem5-
fusion"

For m5ops, BC requires path to GEM5

51

Adding m5ops Steps

• Now get input file and run in gem5:

 cd $HOME

 wget
http://dist.gem5.org/dist/develop/datasets/pannotia/bc/1k_128
k.gr

 docker run --rm --volume
/var/lib/docker/codespacemount/workspace/:/workspaces -w
`pwd` gcr.io/gem5-test/gcn-gpu:v22-0
gem5/build/GCN3_X86/gem5.opt -d m5out-bc
gem5/configs/example/apu_se.py -n 3 --mem-size=16GB --
benchmark-root=gem5-resources/src/gpu/pannotia/bc/bin -c
bc.gem5 --options=“1k_128k.gr"

 Should take ~30 minutes to run this (small) input file

52

Impact of m5ops

• Many more sets of stats – 1 per kernel

• Can see the difference in shaderActiveTicks (or other stats) across kernels

• backtrack_kernel and bfs_kernel calls dominate (clean_1d and clean_bc are minor)

• Certain kernel calls (even for the same kernel) are much longer than others (have more
work)

Can contribute this change to BC to gem5-resources tomorrow!

53

gem5-Resources: lots of GPU workloads

Utilize these to get started after the workshop!

BACKUP

55

Scratchpad Organization

• Banks divide the address space into chunks (corresponds to banks in
hardware)
• Stripe Data across it

• Threads can access different banks in parallel

Crossbar (fully connected network)

Banks

Vector

Lanes

(threads)

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] A[11] A[12]A[13] A[14] A[15]Array:

int A[N]
A[16] A[17] A[18]

A[index(i

)]

56

How does
scratchpad deal
with Conflicts?

• Basic approach:

1. Separate into non
conflicting groups

2. Service sequentially

• In contrast to cache,
groups don’t need to

be the same sequential
cache line

57

Other Memory Optimizations

• Read-only Memory/Constant Caches

• Use for data that is guaranteed to be constant

• Texture Caches/Images/Samplers

• Provides fast hardware 1D/2D/3D interpolation

• Very useful for graphics

• Before better caching for GPGPU, was used for compute apps

58

CPU/GPU Architectural Differences

CPUs

• Use caches and buffering
in abundance.

• Few large cores.

• Much smaller BW.

• Fast synchronization.

GPUs

• More threads to hide
latency to memory.

• Many small cores.

• Much higher BW.

• Slow/non-global

synchronization.

• Special HW function units
(transcendentals,

textures)

59

CPUs & GPUs have different characteristics.

CPUs

+ general-purpose (many types of apps)

+ multiple cores (compute in parallel).

+ fast response time for a single task.

- Complexity (few cores)

GPUs
+ designed to exploit data parallelism

+/- tradeoff single-thread performance for increased
parallel processing

+ hide memory latencies.

+ more compute flops.

- Limited by Amdahl’s Law.

60

What’s “good” for executing on GPUs?

• (Traditionally)

• Abundant parallelism.

• Single-threaded performance less important (MLP and TLP instead of ILP).

• Workloads that take advantage of “special features” (like textures).

• Workloads that require lots of bandwidth.

• Regular data access patterns

61

CPU Coherence: MESI

• Write miss: Get ownership, invalidate all sharers

• Read miss: Update sharers list

• Synchronization points are cheap

• BUT poor fit for GPUs:

• Directory overhead, transient states, excessive traffic, indirection

L2$
Bank

Interconnection n/w

GPU

L2$
Bank

CPU

CacheCacheObtain

ownership

Own Valid

Invalidate

all sharers

A
C

K

Dirty

// each thread

for i = r[tid]:r[tid+1]

 LOCK
 LD R1, A[i];
 LD R2, B[i];
 R3 Math(R1, R2);
 ST B[i], R3;
 UNLOCK

Valid

Dir
V,CPU
O,GPU
O,GPU
V,GPU

CS/ECE 752 (Sinclair): Vectors, DLP, & GPUs 61

62

Traditional GPU Coherence

L2$
Bank

Interconnection n/w

GPU

L2$
Bank

CPU

CacheCacheValidDirty
Valid

Flush dirty

data

Invalidate

all data

// unique per thread
for i = start:end
 LD R1, A[i];
 LD R2, B[i];
 R3 Math(R1, R2);
 ST C[i], R3;

No data reuse or data sharing

Optimized for streaming, data parallel applications

Coarse-grained synchronization

Valid

Each thread accesses independent data (no races)

CS/ECE 752 (Sinclair): Vectors, DLP, & GPUs 62

63

GPU Memory Consistency Model

• Active area of research

• Tightly tied in with coherence protocol

• Provides very weak guarantees

• Respect program order within a single thread

• Easy to design hardware

• Programmers add fences to provide extra guarantees

• Fence guarantee all previous accesses are visible before proceeding

• … usually

• Most GPUs use a scoped memory consistency model

• Only apply GPU fences locally if all users are local – less overhead

• But more work for programmer

CS/ECE 752 (Sinclair): Vectors, DLP, & GPUs 63

64

Are GPUs awesome?
… yes but…

65

GPU’s are more computationally dense
right?

• Conventional
Wisdom:

• GPUs use less
cache, so more
dense

• However, if you
include register
files….

GPU Register files

+ caches

8.3 MBNVIDIA

GM204 GPU

AMD Hawaii

GPU

Intel Core i7

CPU

15.8 MB

9.3 MB

Did we really

need that many

threads???

66

GPU Still have a lot of Overheads

• Memory Access:

• Dynamic coalescing energy overheads

• Cache thrashing from many threads

• Data needs to be laid out correctly (bank conflicts,
communication, etc.)

• Control Flow:

• Hardware structures to track thread divergence

• Operand Communication:
• All communication between instructions goes through register files

• Scheduling Warps/Threads:
• Dynamically decide which wards to execute

• Register File due to Multithreading

• Each thread needs space in the register file for live values!

67

Limits of GPUs

• SIMT Control Flow

• Threads (warps/wavefronts) normally run in lockstep

• But not all guaranteed to take same branch

• Solution: reconvergence points … or use predication

• Bad for performance and correctness

• Memory Divergence

• Bank conflicts or cache misses for subset of threads delays warp

• Data layout & partitioning important

• Bad for perf

• Communication

• Easy to communicate locally. Expensive to communicate globally.

• Active area of research

CS/ECE 752 (Sinclair): Vectors, DLP, & GPUs 67

Example Slide

• Code should include line numbers

for easy referencing.

• No "dark mode" code examples.

Dark text on light background is best.

• The font we are using is called

"Neuzeit". Install here:

https://dl.freefontsfamily.com/downl

oad/Neuzeit-Font

• Text color is "Aqua".

	Slide 1: Running (AMD) GPU experiments in gem5
	Slide 2: Disclaimers
	Slide 3: Contributors
	Slide 4: Compiling gem5 GPU Model
	Slide 5: Graphics Processing Units (GPU)
	Slide 6: GPU Evolution
	Slide 7: Learning Outcomes
	Slide 8: Outline
	Slide 9: Flynn’s Taxonomy
	Slide 10: Flynn’s Taxonomy (Cont.)
	Slide 11: Execution Model Comparison
	Slide 12: GPUs & Memory
	Slide 13: Multicore/Multithreading/SMT on GPUs
	Slide 14: GPU Component Names
	Slide 15: Programming GPUs
	Slide 16: GPU Hardware Overview
	Slide 17: Compute Unit (CU) – The GPU “Core”
	Slide 18: How do we do efficient memory access?
	Slide 19: How many ports should my L1 have?
	Slide 20
	Slide 21: SIMT Unit – A GPU Pipeline
	Slide 22: Address Coalescing
	Slide 23: Memory System Optimizations
	Slide 24: Caches to the Rescue?
	Slide 25: GPU Caches
	Slide 26: Outline
	Slide 27
	Slide 28: Alternate View
	Slide 29: AMD’s ROCm Stack
	Slide 30: Creating Portable gem5 Resources
	Slide 31: Outline
	Slide 32: Current Support
	Slide 33: GPUFS Support
	Slide 34: APU vs. dGPU
	Slide 35: Outline
	Slide 36: Key GPU Code Locations
	Slide 37: How does a GPU Kernel Actually Run?
	Slide 38: Dispatching Kernels to CUs
	Slide 39: How does an instruction actually run through GPU?
	Slide 40: Outline
	Slide 41: Compiling gem5’s GCN3 GPU model
	Slide 42: Outline
	Slide 43: Running Square
	Slide 44: Comparing register allocation schemes
	Slide 45: GPU Stats
	Slide 46: Comparing simple and dynamic register allocation
	Slide 47: Dynamic Register Allocation Not Always Better
	Slide 48: Running Multi-Kernel GPU Applications
	Slide 49: Adding m5ops Steps
	Slide 50: Adding m5ops Steps
	Slide 51: Adding m5ops Steps
	Slide 52: Impact of m5ops
	Slide 53: gem5-Resources: lots of GPU workloads
	Slide 54: BACKUP
	Slide 55: Scratchpad Organization
	Slide 56: How does scratchpad deal with Conflicts?
	Slide 57: Other Memory Optimizations
	Slide 58: CPU/GPU Architectural Differences
	Slide 59: CPUs & GPUs have different characteristics.
	Slide 60: What’s “good” for executing on GPUs?
	Slide 61: CPU Coherence: MESI
	Slide 62: Traditional GPU Coherence
	Slide 63: GPU Memory Consistency Model
	Slide 64: Are GPUs awesome? … yes but…
	Slide 65: GPU’s are more computationally dense right?
	Slide 66: GPU Still have a lot of Overheads
	Slide 67: Limits of GPUs
	Slide 68: Example Slide

