Running (AMD) GPU
experiments in gem5

Matthew D. Sinclair

University of Wisconsin-Madison, AMD Research
g e I I I sinclair@cs.wisc.edu

mailto:sinclair@cs.wisc.edu

Disclaimers

e #1: Currently gem5 only supports AMD GPUs
e The concepts are similar to NVIDIA GPUs though

o #2: Currently gem5 only supports GPGPU workloads (no Vulkan,
OpenGL)

Contributors

o AMD Research: Brad Beckmann, Alex Dutu, Tony Gutierrez, Michale
LeBeane, Matthew Poremba, Brandon Potter, Sooraj Puthoor, &
many more

e UW-Madison: Anushka Chandrashekar, Gaurav Jain, Charles
Jamieson, Jing Li, Kyle Roarty, Mingyuan Xiang, Bobbi Yogatama, &
others

e Some slides based on content presented by these folks previously

Compiling gem5 GPU Model

docker pull gcr.io/gem5-test/gcn-gpu:v22-0
cd gem5

docker run --rm --volume
/var/lib/docker/codespacemount/workspace/:/workspaces -w pwd"
gcr.io/gem5-test/gcn-gpu:v22-0 scons build/GCN3_X86/gem5.opt —j17

e This will take ~20 minutes to compile — we'll come back to them
e Commands also in 11-gpu/README.md

Graphics Processing Units (GPU)

e Killer app for parallelism: graphics (3D games)

* A quiet revolution and potential build-up

— Calculation: 367 GFLOPS vs. 32 GFLOPS
— Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
— Until recently, programmed through graphics API

Tesla S870

G800 = GaFarca BE00 GTX
G = GaFarca 7000 GTX
G700 = GaFaorca TE00 GTX

7))
o
O
—
L
O

1.0 GH
| MY 35 v Intel Core2 Duo
| NV

M40 = GeForca 8800 Ulira
MNWA5 = GeForca FX 5850 Ulra
M0 = GeForca FX 5800

Jan Jun ;‘».pr "'-.I;Lj. MNov Mar N
2003 2004 2005 2006

— GPU in every desktop, laptop, mobile device
— massive volume and potential impact

© David Kirk /NVIDIA and Wen-mei W, Hwu, 2007-2009 ECE 498AL, University of Illinois, Urbana-Champaign

GPU Evolution

e New killer app: Machine Learning
e ... and crypto

Disclaimer: this talk will not teach you how to run crypto in gem>5

Learning Outcomes

e By the end of this class attendees will be able to:
- Understand the basics of GPU architecture and programming.

- Understand the basics of how (AMD) GPUs are implemented in
gemb>.

- Compile the gem5 GPU model (and describe how and why docker
support is provided).
- Run basic GPU tests on the (AMD) GPU model.

- Compare and contrast the results of different register allocation
schemes.

- Identify what additional resources gem5-resources provides.

Outline

e Background: GPU Architecture & Programming Basics (20-30
minutes)

e Modeling & Using GPUs in gem5 (1 hour)
e Running GPU programs in gem5 (1 hour)

Flynn’s Taxonomy

e Focus: Data parallel workloads
e Independent, identical computation on multiple data inputs

e MIMD (Multiple Instruction, Multiple Data):
e Split independent work over multiple processors
e Subcategory: SPMD (Single Program, Multiple Data)
e Only if work is identical (same program)

e SIMD (Single Instruction, Multiple Data):

e Split identical, independent work over multiple execution units
e More efficient: eliminate redundant fetch/decode vs. SPMD/MIMD
e Use single PC and single register file

Flynn’s Taxonomy (Cont.)

e SIMD’s cousin: SIMT (Single Instruction, Multiple Thread)
e Split identical, independent work over multiple lockstep threads
e One PC for group of lockstep threads, but multiple register files
e This is what GPUs do today
e Work well for streaming applications

e Sidenote:
e People use SIMT and SIMD somewhat interchangeably
e They do have differences though

10

Execution Model Comparison

MIMD/SPMD

Multicore
CPUs

More general:

Example

Pros petter support
for TLP
cons Inefficient for

data parallelism

SIMD/Vector

x86 SSE/AVX

Able to mix
serial and
parallel code

Gather/Scatter
Implementations
more complicated

SIMT

GPUs

Easier to program,
Scatter & Gather
operations

Divergence Kkills
performance

11

GPUs & Memory

e GPUs optimized for streaming computations
e Thus, we have a lot of streaming memory accesses

e DRAM: 100’s of GPU cycles per memory access
e How to hide this overhead & keep the GPU busy in the meantime?

e Traditional CPU approaches:

e Caches = Need spatial/temporal locality X
e Streaming applications have little reuse
e O00/Dynamic Scheduling > Need ILP X

e Too power hungry, diminishing returns for GPU applications
e Multicore/Multithreading/SMT = need independent threads v

12

Multicore/Multithreading/SMT on GPUs

e Group SIMT “threads” together on a GPU “core”

e SIMT threads are grouped together for efficiency
e Loose analogy: SIMT thread group = one CPU SMT thread
o Difference: GPU threads are exposed to the programmer

e Execute different SIMT thread groups simultaneously
e On a single GPU “core” per-cycle SIMT thread groups swaps
o Execute different SIMT thread groups on different GPU “cores”

GPU
GPU “Core” GPU “Core”

GPU Component Names
CUDA/HIP OpenCL

\ Thread Work-item
Warp Wavefront
" Thread Group |
' | Thread Workgrou
: \%\: Block/CTA P
; !
GPU
GPU “Core” GPU “Core”
'\ Grid NDRange
\\\\‘ R \ [- \‘\ \\‘ \ \ (Kernel) (Kernel)
FV44 vV ¥y TV44 vvvy

Programming GPUs

e Program it with CUDA, HIP, or OpenCL
e CUDA = Compute Unified Device Architecture
e NVIDIA's proprietary solution
e OpenCL = Open Computing Language
e Open, industrywide standard
HIP = Heterogeneous interface for portability
e AMD's open solution, its successor to OpenCL
e OpenCL partially supported inside HIP kernels
o All: Extensions to C
e Perform a “shader task” (a snippet of scalar computation) over many elements
e Internally, GPU uses scatter/gather and vector mask operations

e QOther solutions:
o C++ AMP (Microsoft), OpenACC (extension to OpenMP)

15

GPU Hardware Overview

GPU

GPU “Core”

VVVVVV

GPU “Core”

"

aPU

GDDRS /[HBM

L1 Cache

SIMT
SIMT
SIMT
SIMT

Local Memory

L1 Cache

Local Memory

SIMT
SIMT
SIMT
SIMT

16

Compute Unit (CU) — The GPU “Core”

e Job: run thread blocks/workgroups
e Contains multiple SIMT units (4 in picture below)
e Each cycle, schedule one SIMT unit

e SIMT unit: runs wavefronts/warps
e Run the threads
e AMD: size N (e.g., 10) wavefront instruction buffer
e 4 cycles to execute one wavefront
e Average: fetch and commit 1 wavefront/cycle

GPU

L2 Cache

| HBM

dC
5|z
(73] v
| e

1=

5|z
(73] v
| e

L1 Cache

17

How do we do efficient memory access?

* Pseudo CUDA for contiguous access:

gpu void add(int *a, int *b, int *c) {
c[tid] = a[tid] + b[tid];

} L1
é Cache
/< TS N Va . Instead issue one access Coalescer
at0 a+4 a+8 a+16*4 A[n:n+16%4]

Lane O Lane N-1
* Pseudo CUDA for non-contiguous access:
gpu void add(int *a, int *b, int *c) {
c[tid] = a[tid*2] + b[tid];
}

4 ——» Instead issue two access
VAR 37 An n+164],
A[n+16*4:n+32*4]
(hardware overhead to dynamically coalesce memory access...

and collect the operands)

18

How many ports should my L1 have?

e Warp: 32 Threads, 32 Load/Store Ports to L1 Cache?

e Non-starter, even banking doesn't solve the problem...
e Should 32 cache misses cause 32 requests to memory!?
e Aside: AMD hardware uses wavefronts (often size 64 threads)

e Common case:
o All threads in warp/wavefront access same cache block(s)

e Addressing coalescing:
e Dynamically combine addresses generated from each lane

Address Coalescing Unit

e Reduces in-flight memory requests, helps DRAM b/w, important

19

git remote add upstream https://qgithub.com/gem5bootcamp/gem5-bootcamp-env
git fetch upstream

git reset —hard upstream/main

rebuild container

docker pull gcr.io/gem5-test/gcn-gpu:v22-0
cd gem5

docker run --rm --volume
/var/lib/docker/codespacemount/workspace/:/workspaces -w "pwd" gcr.io/gem5-
test/gcn-gpu:v22-0 scons build/GCN3_X86/gemb5.opt —j17

20

https://github.com/gem5bootcamp/gem5-bootcamp-env

SIMT Unit — A GPU Pipeline

Similar to a wide CPU pipeline, except only fetch 1 instr.
16-wide physical ALU — why not 64?

64 KB register state/SIMD unit

e Much bigger (~64X) than CPUs — why?

Addressing coalescing key to good performance

e Each thread potentially fetches a different piece of data
e 64 separate addresses for AMD, 32 for NVIDIA (tradeoffs)

3 3 5
1 1 1
=T =T o
w w i
(s oo o

Address Coalescing Unit

Registers

21

Address Coalescing

e 32-64 memory requests issued per memory instruction

e Common case:
o All threads in warp/wavefront access same cache block(s)
e If not: divergence

e Coalescing:
e Merge many thread’s requests into a single cache block request
e Reduces number of in-flight memory requests
e Helpful for reducing bandwidth to DRAM
e Very important for performance

22

Memory System Optimizations

e GPUs are throughput-oriented processors
e CPUs are latency-oriented

o Goal:
e Hide the latency of memory accesses with many in-flight threads
e Memory system needs must handle lots of overlapping requests

e But what if not enough threads to cover up the latency?

23

Caches to the Rescue?

e Comparison: Modern CPU and GPU caches

L1 D$ capacity 64 KB 32 KB
Active threads/work-items sharing L1 D$ 2 2560
< L1 D$ capacity/thread 32 KB 12.8 bytes —
Last level cache (LLC) capacity 8 MB 4 MB
Active threads/work-items sharing LLC 16 163840
< LLC capacity/thread 0.5 MB 25.6 bytes —>

GPU caches can’t be used in the same way as CPU caches

GPU Caches

Goal: maximize throughput, not latency (unlike CPUs)
e Traditionally little temporal locality to exploit
o Also little spatial locality, since coalescing logic handles most of it

L1 cache:

e Coalesce requests to same cache block by different threads

e Keep around long enough for all threads in warp/wavefront to hit
e Once

e Ultimate goal: reduce number of requests sent to DRAM

L2 cache: DRAM staging buffer + some instruction reuse
e Ultimate goal: tolerate spikes in DRAM bandwidth

Use specialized memories (e.g., scratchpad, texture) for any temporal locality

25

Outline

e Background: GPU Architecture & Programming Basics (20-30
minutes)

e Modeling & Using GPUs in gem>5 (1 hour)
- What libraries are required?
- What support is provided?
- Where is GPU code?
- How to compile GPU model in gem5?

e Running GPU programs in gem5 (1 hour)

26

App rocBLAS, ...

Source

N\

(

I

I
User space Y

I

I

\

I
I
"
) |
I
!

}

e
OS kernel space !
\

This is what a GPU app running in gem5 requires

gemb runs or models all of this

hardware
models

\-

GCN3ELF +
Code metadata

M

.

x86 ELF

)

Alternate View

rocBLAS (+ Tensile)

Getting all of this installed correctly can be difficult!

28

AMD’s ROCm Stack

¢ ROCm == Radeon Open Compute
e ROCm stack
e Runtime layer — ROCr
e Thunk (user-space driver) — ROCt
e Kernel fusion driver (KFD) — ROCk
e MIOpen — machine intelligence (ML) library
e rocBLAS — BLAS (e.g., GEMMs) library
e HIP — GPU programming language (roughly: LLVM backend, clang front-end)

e gemb5 simulates all of these except ROCk, which it emulates in SE mode

29

Creating Portable gem5 Resources

 Docker container .::E.
* Properly installs ROCm software stack ‘dOCker

* Publicly Available!
* Integrated into gemb5 repo: https://gem5.googlesource.com/
« Added bmks & doc. in gem5-resources [Bruce ISPASS ‘20 Best Paper Nom.]
« Used in continuous integration to ensure GPU support is stable
« Strongly suggest building applications requiring ROCm with docker

o All of our experiments today will assume this docker support
e docker pull gcr.io/gem5-test/gen-gpu:v22-0+<— For gem5 v22.0

_Y_I

gem5 GPU docker

30

https://gem5.googlesource.com/

Outline

e Background: GPU Architecture & Programming Basics (20-30
minutes)

e Modeling & Using GPUs in gem>5 (1 hour)
- What libraries are required?
- What support is provided?
- Where is GPU code?
- How to compile GPU model in gem5?

e Running GPU programs in gem5 (1 hour)

31

Current Support

ROCm supported in gem5: ROCm v4.0

SE mode vs. FS mode:
e SE mode is well supported on stable — today’s focus
e FS mode was just released on develop with 22.0, but won't discuss today

AMD GPU support

GCN3 (gfx801 — APU, gfx803 — dGPU)

Vega (gfx900 — dGPU, gfx902 — APU, partial support)
Vega is newer model than GCN3

If you want to run on the VEGA model in gem5, you need to compile for the appropriate
gfx9* model

Standard library: currently not supported — use apu_se.py and gpufs.py instead
Currently only supports Ruby

Today we will focus on GCN3 and gfx801, because they’'re most tested

32

GPUEFS Support

Gerrit cHaNces YOUR DOCUMENTATION BROWSE Q ® & @
¥r 58389 resources: Instructions to build and run GPU full system O W REVERT |
Change Info SHOWALL v EEUEERg
Submitted Jun 17

resources: Instructions to build and run GPU full system
Owner @ Matthew Poremba

Uploader 9 Bobby Bruce &2 Change-Id: I1281a319798f1799f39cfc2f9c4ee2fe7abeb694

B i Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5-
Reviewers @ Matt Sinclair - @) Jason Lowe-P.. resources/+/58389

gBobby Bruce #2) (g Jason Lowe-P... Reviewed-by: Bobby Bruce <bbruce@ucdavis.edu>

> Tested-by: Bobby Bruce <bbruce@ucdavis.edu>
°

< Bobby Bruce | / Maintainer: Bobby Bruce <bbruce@ucdavis.edu>
Repo | Branch public/gem5-resources | stable

. A
Submit Requirements Comments (=7 26 resolved

@ Code-Review #2
Q Maintainer #1

@ Vverified +1
Files Comments

Base — Patchset 8 c30d1dsé 10 DOWNLOAD EXPAND ALL
File Comments Size Delta

Commit message v
src/gpu-fs/disk-image/build.sh |"Added 1 +39 -0 Reviewed v
src/gpu-fs/disk-image/rocm42/post-installation.sh |"Added 1 +47 -0 Reviewed v
src/gpu-fs/disk-image/rocm42/rocm42.json | Added 1 +104 -8 v
sre/gpu-fs/disk-image/rocm42/rocm42-install.sh | Added 1 +89 -0 v
src/gpu-fs/disk-image/rocm42/runscript.sh | Added 1 +38 -0 Reviewed v
src/gpu-fs/disk-image/shared/preseed.cfg | Added 1 +132 -0 Reviewed v
src/gpu-fs/disk-image/shared/serial-getty@.service | Added 1 +46 -0 v
src/gpu-fs/disk-image/shared/vegal10.rom | Added +128 KiB v
src/gpu-fs/README.md | Added 1 +114 -6 v
src/gpu-fs/vega_mmio.log | Added EEm— +32009 -6 v

Simulates all driver calls + able to support newer ROCm versions “out of the box”

APU vs. dGPU

e APU = CPU+GPU have a single, unified address space
e dGPU = CPU and GPU have separate, discrete address spaces
o Sidenote: SQC = GPU L1 1%, TCP = GPU L1 D$, TCC = unified GPU L2%

‘ cpu)

|
=
|

“crun |[(cron |
|

Cuo |

|

|

|

Lo

.

= = -

Memory
Controller

34

Outline

e Background: GPU Architecture & Programming Basics (20-30
minutes)

e Modeling & Using GPUs in gem>5 (1 hour)
- What libraries are required?
- What support is provided?
- Where is GPU code?
- How to compile GPU model in gem5?

e Running GPU programs in gem5 (1 hour)

35

Key GPU Code Locations

e Gemb5 < top-level directory
e src/
e arch/amdgpu/
« gcn3/ < GCN3 specific code (e.g., GCN3 ISA)
« vega/ < Vega specific code (e.g., Vega ISA)

. gpu-compute/ < GPU core (CU) model
e Instruction buffering, Registers, Vector ALUs
e mem/protocol/ < APU memory model

. mem/ruby/ < APU memory model
e TCP, TCC, SQC (Ruby based)
. dev/hsa; < HSA device models
e« configs/
. example/ € apu_se.py sample script (also gpufs.py script)
e Connects multiple CUs, caches, etc. together to create overall GPU model

. ruby/ < APU protocol configs

36

How does a GPU Kernel Actually Run?

User Space SW

User space SW talks to GPU via ioctl() gpu_compute_driver. [hh|cc] [ioctio

e ROCk is emulated in gem5 (SE mode only) \: ROCk \

e Handlesioctl commands
CP (Command Proc) frontend dev/hsa/hsa_packet_processor. [hh|cc]

e TWwWO primary Components: dev/hsa/hw_scheduler. [hh|cc] ,__\‘z _______________

e HSA packet processor (HSAPP) { HW Queue
e Workgroup dispatcher kernels ! | ESaEE:

Dispatcher

i I HW queue t
Runtime creates soft HSA queues | R BN SAPP |
e HSAPP maps them to hardware queues N\ - ————————————=_____~T-_

e HSAPP schedules active queues
Runtime creates and enqueues AQL packets

Model Components

e Packets include: Head ptr \PQ» 2
e Kernel resource requirements Q& _L o4 Tail ptr
e Kernel size
e Kernel code object pointer hsa_packet.hh
e More...

HSA software queue

37

Dispatching Kernels to CUs

dispatcher. [hh|cc]

\ hsa_queue_entry.hh

~

CuU

CuU

wg(0,0,0

wg(1,q,0)

0,1

wg(T, 1, 0)

CU

Shader \

[GPU Dispatcher
ID

~

HSA

(AQl kernel)

~

Queue Entf

J

1) Try to dispatch WGs on every cycle

2) Pick oldest AQL pkt in queue; if it has
unexecuted WGs, try to schedule them on a CU

3) Dispatch WG to CU if there are enough WF

slots, enough GPRs, and enough LDS space /

Kernel dispatch is resource limited K
e WGs are scheduled to CUs

Dispatcher tracks status of in-flight/pending kernels

e If a WG from a kernel cannot be scheduled, it is enqueued until resources become available

e When all WGs from a task have completed, the dispatcher frees CU resources and notifies the host

38

How does an instruction actually run through GPU?

Fetched WFs Ready WFs Executing WFs

= [1

Scoreboard Schedule Execute
pipeline

el LOCal memory (LDS)

sl GlObal memory (TCP)
el SCalar memory

e Pipeline stages
e Fetch: fetch for dispatched WFs - fetch_stage. [hh|cc] and fetch_unit.[hh|cc]
e Scoreboard: Check which WFs are ready - scoreboard_check_stage. [hh]|cc]
e Schedule: Select a WF from the ready pool - schedule_stage. [hh|cc]
e Execute: Run WF on execution resource - exec_stage. [hh|cc]

e Memory pipeline: Execute (local data store) LDS/global memory operation
e local_memory_pipeline.[hh|cc]
e global_memory_pipeline. [hh|cc]
e scalar_memory_pipeline. [hh]|cc]

39

Outline

e Background: GPU Architecture & Programming Basics (20-
30 minutes)

e Modeling & Using GPUs in gem5 (1 hour)
- Where is GPU code?
- What libraries are required?
- What support is provided?
- How to compile GPU model in gem>5?

e Running GPU programs in gem5 (1 hour)

40

Compiling gem5’s GCN3 GPU model

cd gem5

docker run --rm --volume
/var/lib/docker/codespacemount/workspace/:/workspaces -w "pwd" gcr.io/gem5-
test/gcn-gpu:v22-0 scons build/GCN3_X86/gem5.opt —j17

Use the v22.0 gem5 docker we pulled earlier Build the GCN3 model

Hopefully this has compiled for everyone already

41

Outline

e Background: GPU Architecture & Programming Basics (20-30
minutes)

e Modeling & Using GPUs in gem5 (1 hour)
e Running GPU programs in gem>5 (1 hour)

42

Running Square

e What is square?
e Simple vector addition program — each thread i does C[i] = A[i] + BJi]
o Ideally suited to running on a GPU (perfectly parallel)
e Running:
base config script for running GPU models (in SE mode)
docker run --rm --volume

/var/lib/docker/codespacemount/workSpace/:/workspaces -w pwd"
gcr.io/gem5-test/gcn-gpu:v gem5/build/GCN3_X86/gem5.opt

gem5/configs/example ®®

<gEMS5-resources/src/gpu/square/bin/sg

/

Path to square binary

3 threads because ROCm uses multiple processes

Should take < 5 minutes to run in gem5b

43

Comparing register allocation schemes

e GPU models have support for multiple register allocation schemes
e To specify: --reg-alloc-policy=[dynamic, simple] on command line
e Simple policy: run 1 wavefront per CU at a time
e Few stalls and contention

e Dynamic policy: run up to max (40) wavefronts per CU at a time if registers
are available

e But more stalls and contention

e Your mission: run square with each policy, compare them!
e Use —d to redirect output to a different folder (default: m5out)
e Based on your results, which policy do you think runs by default?

44

GPU Stats
e GPU stats are different from CPU ones — specific counters for GPU

system.cpu3.gmToCompletelLatency: :overflows %] # Ticks queued in GM pipes ordered response buffer (Unspecified)
system.cpu3.gmToCompletelLatency: :min_value e # Ticks queued in GM pipes ordered response buffer (Unspecified)
system.cpu3.gmToCompletelLatency: :max_value (] # Ticks queued in GM pipes ordered response buffer (Unspecified)
system.cpu3.gmToCompletelLatency: :total 2] # Ticks queued in GM pipes ordered response buffer (Unspecified)
system.cpu3.coalsrLineAddresses: :bucket_size 1 # Number of cache lines for coalesced request (Unspecified)
system.cpu3.coalsrLineAddresses: :min_bucket 2] # Number of cache lines for coalesced request (Unspecified)
system.cpu3.coalsrLineAddresses: :max_bucket 20 # Number of cache lines for coalesced request (Unspecified)
system.cpu3.coalsrLineAddresses: :samples 31250 # Number of cache lines for coalesced request (Unspecified)
system.cpu3.coalsrLineAddresses: :mean 2] # Number of cache lines for coalesced request (Unspecified)
system.cpu3.coalsrLineAddresses: :stdev 2] # Number of cache lines for coalesced request (Unspecified)
system.cpu3.coalsrLineAddresses: :underflows] 9.00% ©.00% # Number of cache lines for coalesced request (Unspecified)
system.cpu3.coalsrLineAddresses | 31250 100.00% 100.00% |] 9.00% 100.00% | 2] 0.00% 100.00%
| 2] 9.00% 100.00% | (*] 0.00% 100.00% |] 0.00% 100.00% | 2] 0.00% 100.00% |
2] 0.00% 100.00% | 2] 9.00% 100.00% | 9 0.00% 100.00% | 2] 0.00% 100.00% |
7] 9.00% 1e0.00% |] 9.00% 100.00% | (%] 9.00% 100.00% | %} 9.00% 1e0.00% |
(%] 9.00% 100.00% | %} 9.00% 1e0.00% | %] 9.00% 1e0.00% | (2} 9.00% 100.00% | (2}
0.00% 1ee.00% | e 0.00% 100.00% # Number of cache lines for coalesced request (Unspecified)
- - system.cpu3.coalsrLineAddresses: :overflows e 8.ee% 100.00% # Number of cache lines for coalesced request (Unspecified)
h derACtlveTICkS L] hOW system.cpu3.coalsrLineAddresses: :min_value e # Number of cache lines for coalesced request (Unspecified)
S a " system.cpu3.coalsrLineAddressg s - v e O L LT T —— - - nspecified)

5 sr 1neAddresses::t0tgl 31250 # Number of cache lines for coalesced request (Unspecifle

Iong eaCh Cl ' Was system.cpu3.MActiveTicks 1151851499 Total ticks that any CU attached to this is active (Unspecified

**

.vectorInstSrcOperand:: 126518 # vector instruction source operand distribution (Unspecified)
- - system.cpu3.ve -5 103460 # vector instruction source operand distoibuis

ru n n I n th IS a system.cpu3.vectorInstSrcOperand: :2 137288 " mm;ehm-mntribution (Unspecified)
system.cpu3.vectorInstSrcOperand::3 9 # vector instruction source operand distribution (Unspecified)
system.cpu3.vectorInstDstOperand: :0 128566 # vector instruction destination operand distribution (Unspecified)
system.cpu3.vectorInstDstOperand::1 238700 # vector instruction destination operand distribution (Unspecified)
system.cpu3.vectorInstDstOperand::2 2] # vector instruction destination operand distribution (Unspecified)
system.cpu3.vectorInstDstOperand::3 2] # vector instruction destination operand distribution (Unspecified)
system.cpu3.CUs@.vALUInsts 62696 # Number of vector ALU insts issued. (Unspecified)
system.cpu3.CUs@.vALUInstsPerWF 120.569231 # The avg. number of vector ALU insts issued per-wavefront. (Unspecified
)
system.cpu3.CUs@.sALUInsts 10816 # Number of scalar ALU insts issued. (Unspecified)
system.cpu3.CUs@.sALUInstsPerWF 19.261538 # The avg. number of scalar ALU insts issued per-wavefront. (Unspecified
)
system.cpu3.CUs®.instCyclesVALU 62696 # Number of cycles needed to execute VALU insts. (Unspecified)
system.cpu3.CUs®.instCyclesSALU 10016 # Number of cycles needed to execute SALU insts. (Unspecified)
system.cpu3.CUs®@.threadCyclesVALU 4012544 # Number of thread cycles used to execute vector ALU ops. Similar to ins
tCyclesVALU but multiplied by the number of active threads. (Unspecified)
system.cpu3.CUs@.vALUUtilization 160 # Percentage of active vector ALU threads in a wave. (Unspecified)
system.cpu3.CUs@.1ldsNoFlatInsts 2] # Number of LDS insts issued, not including FLAT accesses that resolve t
o LDS. (Unspecified)
system.cpu3.CUs®.1ldsNoFlatInstsPeriF] # The avg. number of LDS insts (not including FLAT accesses that resolve

to LDS) per-wavefront. (Unspecified)

~5

Comparing simple and dynamic register allocation

e Simple: 1151851499 ticks
e Dynamic: 1155814499 ticks

e Dynamic slightly (0.5%) worse!
e Dependence tracking in gem5 GPU model is not perfect
e Area where new research contributions are needed :)
o Extra contention causes more stalls

46

Dynamic Register Allocation Not Always Better

m Static Register Allocation = Dynamic Register Allocation

3.5
Q
= 3
D
o 2.5
Q.
“w 2
D
N1.5
£ 1
(o]
-
0
Q 06 S & + O O 0 & & » » & & & & &
& & o° & & & & & &P FF S @ P L e o
’1’69 Q’b 0/ QQ Q ’é Oo éo "'0 “0 'b\Q éo -‘9 -‘-0 ég, o0 00& VO\ &6/ *Q & 6/ fép b/ *Q & b/ {6,
&S 9 D & &F L ¢RI b4 o & 9)
L7 & k& S CF TS SS Y& R Oy D L9 ;s Dy 9
& T F & S TS ST G S & F S
6*0 e{i" & N 00\ "\0 QQ\ R @0 © &Q A &Q
& % &7 >/
(s‘e'z < &
§

We patched this with smarter dependence tracking, but other problems may exist

47

Running Multi-Kernel GPU Applications

e Many GPU applications (unlike square) run for multiple kernels
e How to tell the stats for these different kernels apart?

e One option: m5ops — dump_reset_stats between each kernel

e For this, we will use gem5-resources/src/gpu/pannotia/bc
e BC already has support for m5_work_begin and m5_work_end (including in
Makefile)
e So you don't need to worry about adding this
e We want to add a dump_resetstats after each kernel completes

48

Adding m5ops Steps

e Compile m5ops (for x86)

cd gem5/util/m5

docker run --rm --volume
/var/lib/docker/codespacemount/workspace/:/workspaces -w
“pwd gcr.io/gem5-test/gcn-gpu:v22-0 scons
build/x86/out/m5

49

Adding m5ops Steps

e Add dump_reset_stats calls to BC + Compile BC:

cd gem5-resources/src/gpu/pannotia/bc
// add m5ops calls to BC.cpp
// change MAX ITERS from 150 to 2 to speedup simulation

docker run --rm --volume
/var/lib/docker/codespacemount/workspace/:/workspaces -w pwd
gcr.io/gem5-test/gcn-gpu:v22-0 bash -c "export
GEM5_PATH=/workspaces/gem5-bootcamp-env/gem5 ; make gem5-
fusion” ‘

For mb5ops, BC requires path to GEM5

50

Adding m5ops Steps

e Now get input file and run in gemb5:

cd $HOME

wget
http://dist.gem5.0rg/dist/develop/datasets/pannotia/bc/1k 128
kK.gr

docker run --rm --volume
/var/lib/docker/codespacemount/workspace/:/workspaces -w
“pwd gcr.io/gem5-test/gcn-gpu:v22-0
gem5/build/GCN3_X86/gem5.opt -d mSout-bc
gem5/configs/example/apu_se.py -n 3 --mem-size=16GB --
benchmark-root=gem5-resources/src/gpu/pannotia/bc/bin -c
bc.gem5 --options=“1k 128k.gr"

Should take ~30 minutes to run this (small) input file

51

Impact of m5ops

e Many more sets of stats — 1 per kernel

e (Can see the difference in shaderActiveTicks (or other stats) across kernels
e backtrack kernel and bfs_kernel calls dominate (clean_1d and clean_bc are minor)
e Certain kernel calls (even for the same kernel) are much longer than others (have more

work)
system.cpu3.shaderActiveTicks (%] # Total ticks that any CU attached to this shader is active (U
specified)
system.cpu3.shaderActiveTicks (%] # Total ticks that any CU attached to this shader is active (U
specified)
system.cpu3.shaderActiveTicks 10144498 # Total ticks that any CU attached to this shader is active (U
specified)
system.cpu3.shaderActiveTicks 138368499 # Total ticks that any CU attached to this shader 1is active (U
specified)
system.cpu3.shaderActiveTicks 332231999 # Total ticks that any CU attached to this shader is active (U
specified)
system.cpu3.shaderActiveTicks 157947999 # Total ticks that any CU attached to this shader is active (U
specified)
system.cpu3.shaderActiveTicks (%] # Total ticks that any CU attached to this shader is active (U
specified)
system.cpu3.shaderActiveTicks (%] # Total ticks that any CU attached to this shader 1is active (U
specified)
system.cpu3.shaderActiveTicks 1063540997 # Total ticks that any CU attached to this shader is active (U

A£G AN

Can contribute this change to BC to gemb5-resources tomorrow!

gemb5-Resources: lots of GPU workloads

<« C O EJ https://resources.gemb.org/resources/square iﬁ? Q_ search © i’, N G0 @ @ _I

The square test is used to test the GCN3-GPU model.

Compiling square, compiling the GCN3_X86 gem5, and running square on gem5 is dependent on the gcn-gpu docker image, built from the util/dockerfiles/gcn-gpu/Dockerfile on the gemb5 stable branch.

Compiling Square

By default, square will build for all supported GPU types (gfx801, gfx803)

cd src/gpu/square
docker run --rm -v ${PWD}:${PWD} -w ${PWD} -u $UID:$GID gcr.io/gem5-test/gcn-gpu:v21-2 make

The compiled binary can be found in the bin directory.

Pre-built binary

A pre-built binary can be found at http://dist.gem5.org/dist/v21-2/test-progs/square/square.

Compiling GCN3_X86/gem5.opt

The test is run with the GCN3_X86 gemb5 variant, compiled using the gcn-gpu docker image:

git clone https://gem5.googlesource.com/public/gem5
cd gem5
docker run -u $UID:$GID --volume $(pwd):$(pwd) -w $(pwd) gcr.io/gem5-test/gcn-gpu:v21-2 scons build/GCN3_X86/gem5.opt -j <num cores>

Running Square on GCN3_X86/gemb5.opt

docker run -u $UID:$GID --volume $(pwd):$(pwd) -w $(pwd) gcr.io/gem5-test/gcn-gpu:v21-2 gem5/build/GCN3_X86/gem5.opt gem5/configs/example/apu_se.py -n 3 -c bin/square

Utilize these to get started after the workshop!

53

BACKUP

e?2cembd

Scratchpad Organization

e Banks divide the address space into chunks (corresponds to banks in

hardware)
o Stripe Data across it

e Threads can access different banks in parallel

Vector E
Lanes
(threads)
N _/ ——_
)(Cr et
[/ \ S(\ AN
Banks

Array: A[0] All] A[2] A[3] A[4] A[B] A[6] A[7] A[8] A[9] A[10] A[11] A[12]A[13] A[14] A[15]

int A[N]
A[16] A[17] A[18]

Alindex(i
)]

55

How does
scratchpad deal
with Conflicts?

e Basic approach:

1. Separate into non
conflicting groups

2. Service sequentially

e In contrast to cache,
groups don't need to
be the same sequential
cache line

Lafl: Linear addressing wilth a siride ol baa 32-b8 wards cawses 2oway bank canflichs
Right: Lin=ar addressing with a siride of eighl 32:bil words causes B-way bank conflicts

Thread O

Thread 1

Thread 2

Thread 3

Thread 4

Thread &

Thread &

Thread ¥

Thread &

Thread &

Bank 12

Bank 14

56

Other Memory Optimizations

e Read-only Memory/Constant Caches
e Use for data that is guaranteed to be constant

e Texture Caches/Images/Samplers
e Provides fast hardware 1D/2D/3D interpolation
e Very useful for graphics
o Before better caching for GPGPU, was used for compute apps

57

CPU/GPU Architectural Differences

CPUs

Use caches and buffering
in abundance.

Few large cores.
Much smaller BW.
Fast synchronization.

GPUs

More threads to hide
latency to memory.

Many small cores.
Much higher BW.

Slow/non-global
synchronization.

Special HW function units
(transcendentals,
textures)

58

CPUs & GPUs have different characteristics.

CPUs

+ general-purpose (many types of apps)
+ multiple cores (compute in parallel).
+ fast response time for a single task.
- Complexity (few cores)

GPUs
+ designed to exploit data parallelism

+/- tradeoff single-thread performance for increased
parallel processing

+ hide memory latencies.
+ more compute flops.
- Limited by Amdahl’s Law.

59

What's “"good” for executing on GPUs?

e (Traditionally)

e Abundant parallelism.
¢ Single-threaded performance less important (MLP and TLP instead of ILP).

e Work
e Work
e Regu

Oac
Oac

s that take advantage of “special features” (like textures).
s that require lots of bandwidth.

ar G

ata access patterns

60

CPU Coherence: MESI

GPU // each thread
Obtain y BN for i = r[tid]:r[tid+1]
i IidENE LOCK
ownership LD R, Ali];

: LD R2, Bli]' m
Invalidate o5 “Math(R1, R2);
all sharers o B[i], R3;
UNLOCK

LiLer CulneCuvIn iy w

e Write miss: Get ownership, invalidate all sharers
e Read miss: Update sharers list
e Synchronization points are cheap

e BUT poor fit for GPUs:
e Directory overhead, transient states, excessive traffic, indirection

CS/ECE 752 (Sinclair): Vectors, DLP, & GPUs 61
61

Traditional GPU Coherence

o // unique per thread
Fuahidhitéy for i = start:end
albidéda LD R1, A[i];
LD R2, B[i];

R3¢ Math(R1, R2);
ST C[i], R3; u

Interconnection n/w

Each thread accesses independent data (no races)

No data reuse or data sharing

Coarse-grained synchronization
Optimized for streaming, data parallel applications

CS/ECE 752 (Sinclair): Vectors, DLP, & GPUs 62
62

GPU Memory Consistency Model

e Active area of research
o Tightly tied in with coherence protocol

e Provides very weak guarantees
e Respect program order within a single thread
e Easy to design hardware

e Programmers add fences to provide extra guarantees
e Fence guarantee all previous accesses are visible before proceeding
e ... usually

e Most GPUs use a scoped memory consistency model

e Only apply GPU fences locally if all users are local — less overhead
e But more work for programmer

CS/ECE 752 (Sinclair): Vectors, DLP, & GPUs

63

63

Are GPUs awesome?
... yes but...

GPU’s are more computationally dense

right?

Control

Conventional

ALU

ALU

ALU

ALU

Wisdom:

GPUs use less _

cache, so more
dense _

=
=
1
=
1
1
=
=~

However, if you
include register
files....

NVIDIA
GM204 GPU

AMD Hawalii
GPU

Intel Core i7
CPU

CPU

GPU
8.3 MB
15.8 MB Did we really
need that many
9.3 MB threads???

65

GPU Still have a lot of Overheads

e Memory Access:
e Dynamic coalescing energy overheads
e Cache thrashing from many threads
e Data needs to be laid out correctly (bank conflicts,
communication, etc.)
o Control Flow:
e Hardware structures to track thread divergence

e Operand Communication:
o All communication between instructions goes through register files

e Scheduling Warps/Threads:
e Dynamically decide which wards to execute

o Register File due to Multithreading
e Each thread needs space in the register file for live values!

66

Limits of GPUs

e SIMT Control Flow
e Threads (warps/wavefronts) normally run in lockstep
e But not all guaranteed to take same branch
e Solution: reconvergence points ... or use predication
e Bad for performance and correctness

e Memory Divergence
e Bank conflicts or cache misses for subset of threads delays warp
e Data layout & partitioning important
e Bad for perf

e Communication
e Easy to communicate locally. Expensive to communicate globally.
o Active area of research

CS/ECE 752 (Sinclair): Vectors, DLP, & GPUs

67

67

P D RS

—~ & tn

(=]

[T T+ < T

W R @

B3 ORI ORI ORI ORI BRI
=

[33]

e?2cembd

from gem5.components.boards.simple_board import SimpleBoard CO d e S h O u I d i n C I u d e I i n e n u m b e rS

from gem5.components.cachehierarchies.classic.no_cache import HWoCache

from gem5.components.memory.single_channel import SingleChannelDDR3_1600 fo r e a Sy refe re n Ci n g.

from gem5.components.processors.simple_processor import SimpleProcessor

Example Slide

from gem5.components.processors.cpu_types import CPUTypes
from gemS.resources.resource import Resource

from gem5.simulate.simulator import Simulator N O "dark mOde” COde exa m ples.

muwn

Instructions for generating this code will largely follow the tutorial outlined Da rk teXt 0 n Iight baC kg rO U nd iS beSt.

in https://www.gemS.org/documentation/gem5-stdlib/hello-world-tutorial

muwn

The font we are usingis called

Obtain the components.
cache_hierarchy = NoCache()

memory = SingleChannelDDR3_1608("161B") ' N euze It " . I nsta I | h ere.

processor = SimpleProcessor(cpu_type=CPUTypes.ATOMIC, num_cores=1)

s e o e o https://dl.freefontsfamily.com/downl

board = SimpleBoard(
clk_freqg="3GHz", .
processar=processor, Oad/Neuze|t'F0nt
memory=memory,
cache_hierarchy=cache_hierarchy,

) Text coloris "Aqua".

	Slide 1: Running (AMD) GPU experiments in gem5
	Slide 2: Disclaimers
	Slide 3: Contributors
	Slide 4: Compiling gem5 GPU Model
	Slide 5: Graphics Processing Units (GPU)
	Slide 6: GPU Evolution
	Slide 7: Learning Outcomes
	Slide 8: Outline
	Slide 9: Flynn’s Taxonomy
	Slide 10: Flynn’s Taxonomy (Cont.)
	Slide 11: Execution Model Comparison
	Slide 12: GPUs & Memory
	Slide 13: Multicore/Multithreading/SMT on GPUs
	Slide 14: GPU Component Names
	Slide 15: Programming GPUs
	Slide 16: GPU Hardware Overview
	Slide 17: Compute Unit (CU) – The GPU “Core”
	Slide 18: How do we do efficient memory access?
	Slide 19: How many ports should my L1 have?
	Slide 20
	Slide 21: SIMT Unit – A GPU Pipeline
	Slide 22: Address Coalescing
	Slide 23: Memory System Optimizations
	Slide 24: Caches to the Rescue?
	Slide 25: GPU Caches
	Slide 26: Outline
	Slide 27
	Slide 28: Alternate View
	Slide 29: AMD’s ROCm Stack
	Slide 30: Creating Portable gem5 Resources
	Slide 31: Outline
	Slide 32: Current Support
	Slide 33: GPUFS Support
	Slide 34: APU vs. dGPU
	Slide 35: Outline
	Slide 36: Key GPU Code Locations
	Slide 37: How does a GPU Kernel Actually Run?
	Slide 38: Dispatching Kernels to CUs
	Slide 39: How does an instruction actually run through GPU?
	Slide 40: Outline
	Slide 41: Compiling gem5’s GCN3 GPU model
	Slide 42: Outline
	Slide 43: Running Square
	Slide 44: Comparing register allocation schemes
	Slide 45: GPU Stats
	Slide 46: Comparing simple and dynamic register allocation
	Slide 47: Dynamic Register Allocation Not Always Better
	Slide 48: Running Multi-Kernel GPU Applications
	Slide 49: Adding m5ops Steps
	Slide 50: Adding m5ops Steps
	Slide 51: Adding m5ops Steps
	Slide 52: Impact of m5ops
	Slide 53: gem5-Resources: lots of GPU workloads
	Slide 54: BACKUP
	Slide 55: Scratchpad Organization
	Slide 56: How does scratchpad deal with Conflicts?
	Slide 57: Other Memory Optimizations
	Slide 58: CPU/GPU Architectural Differences
	Slide 59: CPUs & GPUs have different characteristics.
	Slide 60: What’s “good” for executing on GPUs?
	Slide 61: CPU Coherence: MESI
	Slide 62: Traditional GPU Coherence
	Slide 63: GPU Memory Consistency Model
	Slide 64: Are GPUs awesome? … yes but…
	Slide 65: GPU’s are more computationally dense right?
	Slide 66: GPU Still have a lot of Overheads
	Slide 67: Limits of GPUs
	Slide 68: Example Slide

