
Interconnect
Network

A presentation by 

Marjan Fariborz



Extend and compile gem5

From gem5-bootcamp-env run:

 “cp materials/developing-gem5-models/10-ruby-network/topologies/* 

gem5/src/python/gem5/components/cachehierarchies/ruby/topologies”

 “cp materials/developing-gem5-models/10-ruby-network/SConscript gem5/src/python”

 “cp materials/developing-gem5-models/10-ruby-network/mi_example_cache_network.py 

gem5/src/python/gem5/components/cachehierarchies/ruby”

From gem5-bootcamp-env/gem5/ run:

 “scons build/NULL/gem5.opt –j$(nproc)”



Review on Ruby

 Controller models (cache controller, directory controller)

 Controller topology (Mesh, all-to-all, and etc.)

 Network models

 Interface (classic ports)



Interconnect Network

L1 Cache 
controller

L1 Cache 
controller

L2 Cache 
controller

Directory 
controller

Directory 
controller

DMA 
Controller Any other 

Controller

On-chip 
interconnect



Background

 As the number of on-chip cores increases, a scalable low-latency and high-bandwidth 

communication fabric to connect them becomes critically important

 Crossbars

 Buses

 Network on chip



Background

 As the number of on-chip cores increases, a scalable low-latency and high-bandwidth 

communication fabric to connect them becomes critically important

 Crossbars

 Buses

 Network on chip

Scale Poorly



Background

 As the number of on-chip cores increases, a scalable low-latency and high-bandwidth 

communication fabric to connect them becomes critically important

 Crossbars

 Buses



 Topology

 Routing

 Flow control

 Router microarchitecture

 Link architecture

Scale Poorly



Types of network in gem5

Types of network:

 Simple network

 Fast

 Doesn’t have detailed parameters

 Link Bandwidth and bandwidth

 Router latency

 Garnet network

 Detailed implementation of routers, links, and the flow control

• More detailed statistics



Configuration

Connects each Controller to one router through an External link.

self.routers = [Switch(router_id = i) for i in range(len(controllers))]

self.ext_links = [SimpleExtLink(link_id=i, ext_node=c,

                                int_node=self.routers[i])

                  for i, c in enumerate(controllers)]

Cache/Dir controller

Router

External link (bi-
directional)



Configuration

Connects each Controller to one router through an External link.

self.routers = [Switch(router_id = i) for i in range(len(controllers))]

self.ext_links = [SimpleExtLink(link_id=i, ext_node=c,

                                int_node=self.routers[i])

                  for i, c in enumerate(controllers)]

An internal link between each of the routers to every other router

self.int_links = []

for routeri in self.routers:

    for routerj in self.routers:

        if routeri == routerj : continue # Don't connect a router to itself!

self.int_links.append(SimpleIntLink(link_id = link_count,

                                            src_node = routeri,

                                             dst_node = routerj))

Cache/Dir controller

Router

External link (bi-
directional)

Internal Link
(single direction



Configuration

Connects each Controller to one router through an External link.

self.routers = [Switch(router_id = i) for i in range(len(controllers))]

self.ext_links = [SimpleExtLink(link_id=i, ext_node=c,

                                int_node=self.routers[i])

                  for i, c in enumerate(controllers)]

An internal link between each of the routers to every other router

self.int_links = []

for routeri in self.routers:

    for routerj in self.routers:

        if routeri == routerj : continue # Don't connect a router to itself!

self.int_links.append(SimpleIntLink(link_id = link_count,

                                            src_node = routeri,

                                             dst_node = routerj))

Topology

Cache/Dir controller

Router

External link (bi-
directional)

Internal Link
(single direction



Topology

Internal link
External link

How the routers are connected to each other



Router Microarchitecture

 Switch -> Simple network:

• Router latency

• Number of virtual networks

 Garnet Router -> Garnet network:

• Number of virtual channels

• Number of virtual networks

• Size of network interface flits (flow control units)



Link Microarchitecture

 Simple network:

• Just specifies the interface and bandwidth factor

• Garnet network

• separate links for data link and flow control links: Network and credit links

• Supports clock domain crossing

• Serialization and deserialization

• Width of the link



Routing

 Table-based Routing

• Shortest path

• Chooses the route with minimum number of link traversals

• Link weight  impacts routing

 Custom Routing algorithms



Example: Garnet



Garnet

From gem5-bootcamp-env run:

 “gem5/build/NULL/gem5.opt –re –outdir=results/Granet materials/developing-gem5-models/10-

ruby-network/network_config.py 4 GarnetPt2Pt 512MiB”

 “gem5/build/NULL/gem5.opt –re –outdir=results/Simple materials/developing-gem5-models/10-

ruby-network/network_config.py 4 SimplePt2Pt 512MiB”



Example: Garnet with Mesh 
topology

1

1

22

Directory controller

Cache controller

Router

External link (bi-
directional)

Internal Link
(single direction



Garnet

 From gem5-bootcamp-env run:

 “gem5/build/NULL/gem5.opt materials/developing-gem5-models/10-ruby-

network/network_config.py 8 GarnetMesh 512MiB”


	Slide 1: Interconnect Network
	Slide 2: Extend and compile gem5
	Slide 3: Review on Ruby
	Slide 4: Interconnect Network 
	Slide 5: Background
	Slide 6: Background
	Slide 7: Background
	Slide 8
	Slide 9: Configuration 
	Slide 10: Configuration 
	Slide 11: Configuration 
	Slide 12: Topology
	Slide 13: Router Microarchitecture
	Slide 14: Link Microarchitecture
	Slide 15: Routing
	Slide 16: Example: Garnet
	Slide 17: Garnet
	Slide 18: Example: Garnet with Mesh topology
	Slide 19: Garnet

