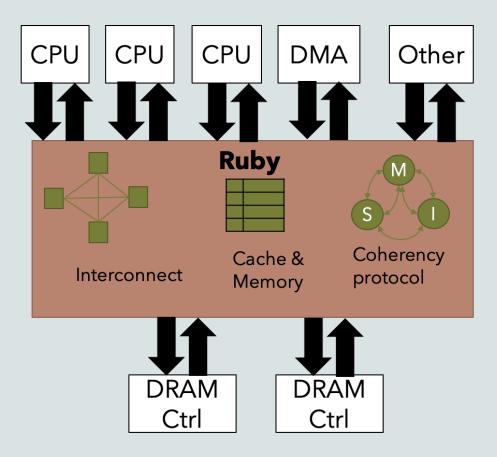


Interconnect Network

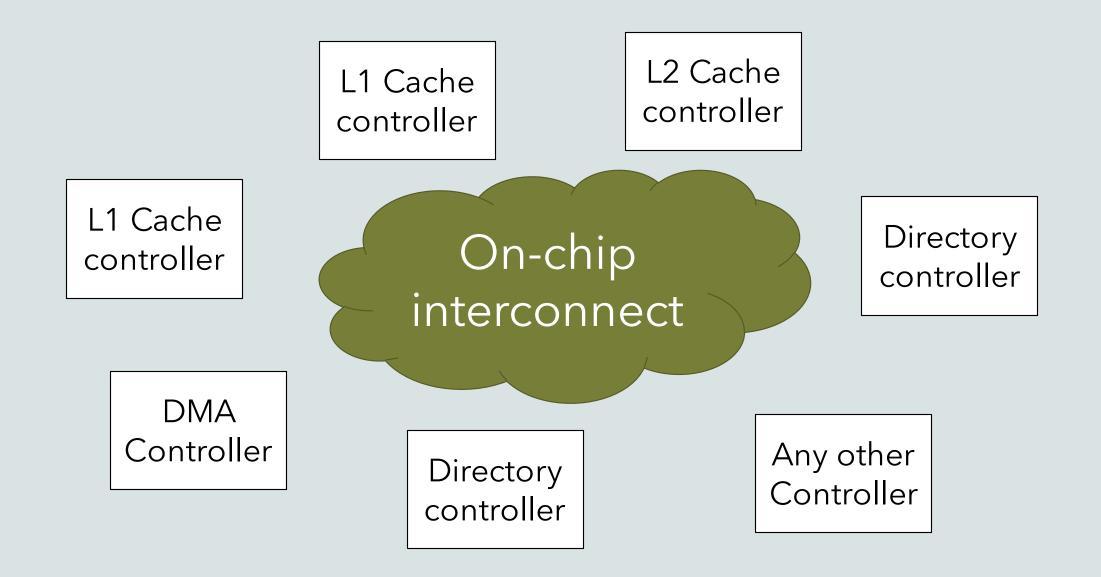
A presentation by Marjan Fariborz

Extend and compile gem5

From gem5-bootcamp-env run:


- "cp materials/developing-gem5-models/10-ruby-network/topologies/*
 gem5/src/python/gem5/components/cachehierarchies/ruby/topologies"
- "cp materials/developing-gem5-models/10-ruby-network/SConscript gem5/src/python"
- "cp materials/developing-gem5-models/10-ruby-network/mi_example_cache_network.py gem5/src/python/gem5/components/cachehierarchies/ruby"

From gem5-bootcamp-env/gem5/ run:


"scons build/NULL/gem5.opt -j\$(nproc)"

Review on Ruby

- **Controller models** (cache controller, directory controller)
- Controller topology (Mesh, all-to-all, and etc.)
- Network models
- Interface (classic ports)

Interconnect Network

Background

- As the number of on-chip cores increases, a scalable low-latency and high-bandwidth communication fabric to connect them becomes critically important
 - Crossbars
 - Buses
 - Network on chip

Background

- As the number of on-chip cores increases, a scalable low-latency and high-bandwidth communication fabric to connect them becomes critically important
 - Crossbars

Scale Poorly

- Buses
- Network on chip

Background

- As the number of on-chip cores increases, a scalable low-latency and high-bandwidth communication fabric to connect them becomes critically important
 - Crossbars
 Scale Poorly
 - Buses
 - Network on chip
 - Topology
 - Routing
 - Flow control
 - Router microarchitecture
 - Link architecture


Types of network in gem5

Types of network:

- Simple network
 - Fast
 - Doesn't have detailed parameters
 - Link Bandwidth and bandwidth
 - Router latency
- Garnet network
 - Detailed implementation of routers, links, and the flow control
 - More detailed statistics

Configuration

Cache/Dir controller
Router
 External link (bi- directional)

↓ ↓

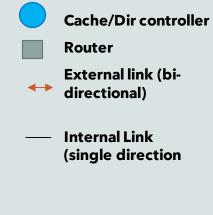
Configuration

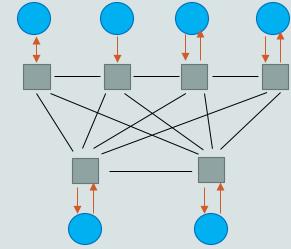
Connects each **Controller** to one **router** through an **External** link.

```
self.routers = [Switch(router_id = i) for i in range(len(controllers))]
```

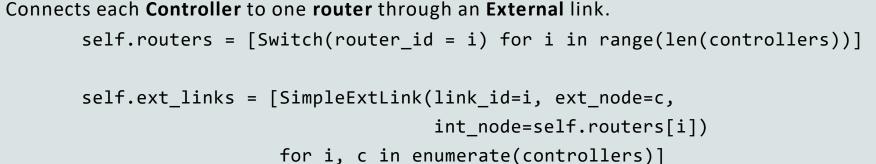
An internal link between each of the routers to every other router

self.int_links = []


```
for routeri in self.routers:
```


```
for routerj in self.routers:
```

```
if routeri == routerj : continue # Don't connect a router to itself!
```


self.int_links.append(SimpleIntLink(link_id = link_count,

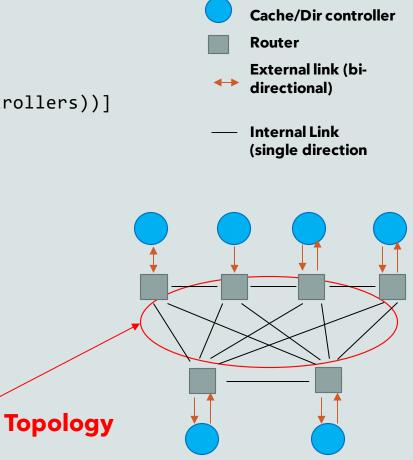
```
src_node = routeri,
dst node = routeri))
```


Configuration

An internal link between each of the routers to every other router

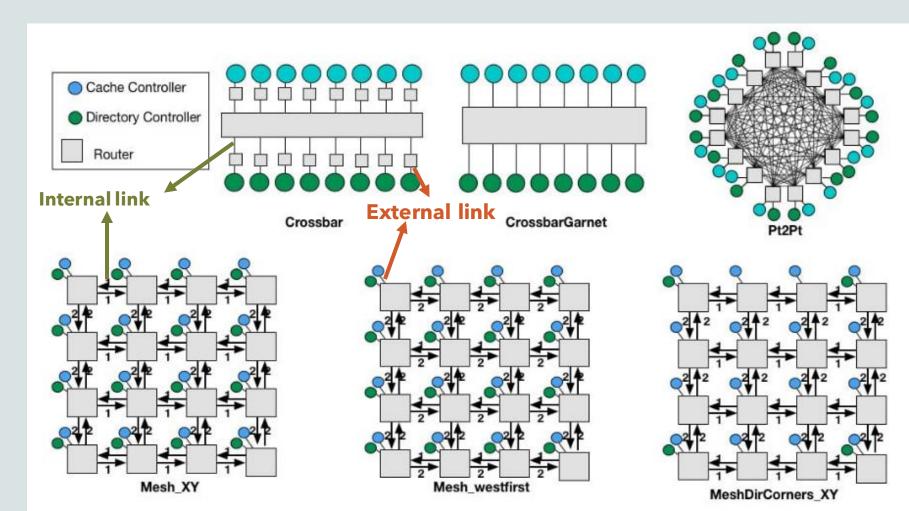
self.int_links = []

for routeri in self.routers:


for routerj in self.routers:

if routeri == routerj: continue # Don't connect a router to itself!

self.int_links.append(SimpleIntLink(link_id = link_count,


src_node = routeri,

```
dst_node = routerj))
```


Topology

How the routers are connected to each other

Router Microarchitecture

- Switch -> Simple network:
 - Router latency
 - Number of virtual networks
- Garnet Router -> Garnet network:
 - Number of virtual channels
 - Number of virtual networks
 - Size of network interface flits (flow control units)

Link Microarchitecture

- Simple network:
 - Just specifies the interface and bandwidth factor
 - Garnet network
 - separate links for data link and flow control links: Network and credit links
 - Supports clock domain crossing
 - Serialization and deserialization
 - Width of the link

Routing

- Table-based Routing
 - Shortest path
 - Chooses the route with minimum number of link traversals
 - Link weight impacts routing
- Custom Routing algorithms

Example: Garnet

- Ruby- MI_Example coherency protocol
- 4 cores (traffic generators)
- 4 Private L1 cache
- 1 Memory controller
- All-to-all topology
- USE STANDARD LIBRARY

Garnet

From gem5-bootcamp-env run:

"gem5/build/NULL/gem5.opt - re - outdir=results/Granet materials/developing-gem5-models/10ruby-network/network_config.py4 GarnetPt2Pt512MiB"

"gem5/build/NULL/gem5.opt -re -outdir=results/Simple materials/developing-gem5-models/10ruby-network/network_config.py4 SimplePt2Pt 512MiB"

Example: Garnet with Mesh topology

Directory controller

Cache controller

External link (bi-

directional)

Internal Link (single direction

2

Router

 \rightarrow

2

- Ruby- MI_Example coherency protocol
- 4 cores (traffic generators)
- 4 Private L1 cache
- 1 Memory controller
- 2 Rows

Garnet

- From gem5-bootcamp-env run:
- "gem5/build/NULL/gem5.opt materials/developing-gem5-models/10-rubynetwork/network_config.py 8 GarnetMesh 512MiB"