
Office hours

Sign up here: tinyurl.com/gem5officehours

Plan for the week

Monday Tuesday Wednesday Thursday Friday

Introduction
• Getting started

with gem5:
using, develop,
and simulation

Using gem5
• gem5 standard

library

Using gem5
• General using
• gem5 models:

caches, CPUs,
memory

• Full system sim
• Accelerating

simulation

gem5 devel
• First SimObject,

params, events,
memory ops

• Instruction
execution

• Adding an
instruction

gem5 devel
• Classic caches
• Ruby and SLICC
• OCN and Garnet

• gem5’s GPGPU
model

Extra topics
• Contributing to

gem5
• Lots of little

things

• Using other
simulators w/
gem5

• Lots of little
things

Ruby, SLICC, and
modeling
coherence

Jason Lowe-Power

Outline

A bit of history and coherence reminder

Components of a SLICC protocol

Exercise: Detailed example of an MSI protocol

Debugging protocols

Where to find things in Ruby

Included protocols

CHI protocol

gem5 history

M5 + GEMS

M5: “Classic” caches, CPU model, requestor/responder port interface

GEMS: Ruby + network

Cache coherence reminder

MSI protocol (Fig. 8.3)

https://www.gem5.org/_pages/static/external/Sorin_et-al_Excerpt_8.2.pdf

CPU CPU CPU OtherDMA

RUBY

DRAM
Ctrl

DRAM
Ctrl

“Classic” ports

“Classic” ports

Ruby

L1 Cache
controller

L1 Cache
controller

L2 Cache
controller

Directory
controller

Directory
controller

DMA
Controller YYY

Controller

On-chip
interconnect

Ruby components

Controller models (e.g., caches)

Controller topology (how are caches connected)

Network model (e.g., on-chip routers)

Interface (“classic” ports in/out)

Main goal
Flexibility, not usability

Controller Models

Implemented in SLICC

 Code for controllers is “generated” via SLICC compiler

SLICC: Specification Language including Cache Coherence

SLICC original purpose

From: A Primer on Memory Consistency and Cache Coherence
 Daniel J. Sorin, Mark D. Hill, and David A. Wood

SLICC original purpose

**Actual output

MSI-cache.sm

machine(MachineType:L1Cache, "MSI cache")
: Sequencer *sequencer; // Incoming request from CPU come from this
CacheMemory *cacheMemory; // This stores the data and cache states
bool send_evictions; // Needed to support O3 CPU and mwait

. . .
{
. . .
}

MSI-cache.sm

L1Cache_Controller.py

• SimObject “declaration file”

• bool send_evictions ->
send_evictions = Param.Bool("")

• Just a SimObject

L1Cache_Controller.cc/hh

• Inherits from AbstractController

• Implementation of the SimObject

L1Cache_Entry.cc/hh

L1Cache_Transitions.cc/hh

L1Cache_State.cc/hh

L1Cache_Wakeup.cc/hh

Others…

Important!
Never modify these files!

Cache state machine outline

Parameters:

 Cache memory: Where the data is stored

 Message buffers: Sending/receiving messages from network

State declarations: The stable and transient states

Event declarations: State machine events that will be “triggered”

Other structures and functions : Entries, TBEs, get/setState, etc.

In ports: Trigger events based on incoming messages

Actions: Execute single operations on cache structures

Transitions: Move from state to state and execute actions

Cache memory

See src/mem/ruby/structures/CacheMemory

Stores the cache data (Entry) and the state (State)

cacheProbe() returns the replacement address if cache is full

Important!
Must call setMRU on each access!

Message buffers

Declaring is confusing!

peek(): Get the head message

pop(): Remove head message (don’t forget this!)

isReady(): Is there a message?

recycle(): Move the head to the tail (better perf., but unrealisitic)

stallAndWait(): Move (stalled) message to different buffer

MessageBuffer * requestToDir, network="To", virtual_network="0", vnet_type="request";

MessageBuffer * forwardFromDir, network="From", virtual_network="1", vnet_type="forward";

in_ports and Msg definitions

in_port(mandatory_in, RubyRequest, mandatoryQueue) {
 if (mandatory_in.isReady(clockEdge())) {
 peek(mandatory_in, RubyRequest, block_on="LineAddress") {
 Entry cache_entry := getCacheEntry(in_msg.LineAddress);
 TBE tbe := TBEs[in_msg.LineAddress];

 if (is_invalid(cache_entry) &&
 cacheMemory.cacheAvail(in_msg.LineAddress) == false) {

 Addr addr := cacheMemory.cacheProbe(in_msg.LineAddress);
 Entry victim_entry := getCacheEntry(addr);
 TBE victim_tbe := TBEs[addr];
 trigger(Event:Replacement, addr, victim_entry, victim_tbe);
 } else {

 if (in_msg.Type == RubyRequestType:LD ||
 in_msg.Type == RubyRequestType:IFETCH) {
 trigger(Event:Load, in_msg.LineAddress, cache_entry,
 tbe);
 } else if (in_msg.Type == RubyRequestType:ST) {

 trigger(Event:Store, in_msg.LineAddress, cache_entry,
 tbe);
 } else {
 error("Unexpected type from processor");
 }

enumeration(CoherenceRequestType, desc="Types of request messages"
 GetS, desc="Request from cache for a block with read permission"
 GetM, desc="Request from cache for a block with write permission"
 PutS, desc="Sent to directory when evicting a block in S (clean WB)"
 PutM, desc="Sent to directory when evicting a block in M"

 // "Requests" from the directory to the caches on the fwd network
 Inv, desc="Probe the cache and invalidate any matching blocks"

 PutAck, desc="The put request has been processed.";

enumeration(CoherenceResponseType, desc="Types of response messages"
 Data, desc="Contains the most up-to-date data";
 InvAck, desc="Message from another cache that they have inv. the blk"

}

Switch!

The .slicc file

protocol "MyMSI";
include "RubySlicc_interfaces.slicc";
include "MSI-msg.sm";
include "MSI-cache.sm";
include "MSI-dir.sm";

Protocol name

Generic includes

Your files

State declarations

state_declaration(State, desc="Cache states") {

 I, AccessPermission:Invalid, desc="Not present/Invalid";

 // States moving out of I

 IS_D, AccessPermission:Invalid, desc="Invalid, moving to S, waiting for data“;

 IM_AD, AccessPermission:Invalid, desc="Invalid, moving to M, waiting for acks and data";

 IM_A, AccessPermission:Busy, desc="Invalid, moving to M, waiting for acks";

 S, AccessPermission:Read_Only, desc="Shared. Read-only, other caches may have the block";

 . . .

}

AccessPermission: Used
for functional accesses

IS_D -> Read: “Invalid transitioning to
Shared waiting for Data”

Event declarations

enumeration(Event, desc="Cache events") {

 // From the processor/sequencer/mandatory queue

 Load, desc="Load from processor";

 Store, desc="Store from processor";

 // Internal event (only triggered from processor requests)

 Replacement, desc="Triggered when block is chosen as victim";

 // Forwarded request from other cache via dir on the forward network

 FwdGetS, desc="Directory sent us a request to satisfy GetS. ";

 "We must have the block in M to respond to this.";

 FwdGetM, desc="Directory sent us a request to satisfy GetM. ";

 . . .

Other structures and functions

Entry: Declare the data structure for each entry

 Block data, block state, sometimes others (e.g., tokens)

TBE/TBETable: Transient Buffer Entry

 Like an MSHR, but not exactly (allocated more often)

 Holds data for blocks in transient states

get/set State, AccessPermissions, functional read/write

 Required to implement AbstractController

 Usually just copy-paste from examples

Not gem5 ports!

out_port: “Rename” the message buffer and declare message type

in_port: Much of the SLICC “magic” here.

 Called every cycle

 Look at head message

 Trigger events

Ports/Message buffers

In ports

in_port(forward_in, RequestMsg, forwardToCache) {

 if (forward_in.isReady(clockEdge())) {

 peek(forward_in, RequestMsg) {

 Entry cache_entry := getCacheEntry(in_msg.addr);

 TBE tbe := TBEs[in_msg.addr];

 if (in_msg.Type == CoherenceRequestType:GetS) {

 trigger(Event:FwdGetS, in_msg.addr, cache_entry, tbe);

 } else

 . . .

Weird syntax!
Automatically populates “in_msg”

in the following block

Trigger() looks for a transition. It
also ensures resources available.

Actions

action(sendGetM, "gM", desc="Send GetM to the directory") {

 enqueue(request_out, RequestMsg, 1) {

 out_msg.addr := address;

 out_msg.Type := CoherenceRequestType:GetM;

 out_msg.Destination.add(mapAddressToMachine(address,
 MachineType:Directory));

 out_msg.MessageSize := MessageSizeType:Control;

 out_msg.Requestor := machineID;

 }

}

Like “peek”, but populates out_msg

Some variables are implicit in actions. These
are passed in via trigger() in in_port.

address, cache_entry, tbe

Transitions

transition(I, Store, IM_AD) {

 allocateCacheBlock;

 allocateTBE;

 sendGetM;

 popMandatoryQueue;

}

transition({IM_AD, SM_AD}, {DataDirNoAcks, DataOwner}, M) {

 writeDataToCache;

 deallocateTBE;

 externalStoreHit;

 popResponseQueue;

}

Begin state

On event

End state

Either state

Either event

Exercise!

Follow directions in materials/developing-gem5-models/09-ruby/README

Learn about ProtocolTrace

Look into the stats

Ruby config scripts

Don’t follow gem5 style closely :(

Require lots of boilerplate

Standard Library does a much better job

Ruby config scripts

1. Instantiate the controllers

 Here is where you pass all of the options from the *.sm file

2. Create a Sequencer for each CPU

 More details in a moment

3. Create and connect all of the network routers

Creating the topology

Usually hidden in “create_topology” (see configs/topologies)

 Problem: These make assumptions about controllers

 Inappropriate for non-default protocols

Point-to-point example

self.routers = [Switch(router_id = i) for i in range(len(controllers))]

self.ext_links = [SimpleExtLink(link_id=i, ext_node=c,
 int_node=self.routers[i])
 for i, c in enumerate(controllers)]

link_count = 0
self.int_links = []
for ri in self.routers:
 for rj in self.routers:
 if ri == rj: continue # Don't connect a router to itself!
 link_count += 1
 self.int_links.append(SimpleIntLink(link_id = link_count,
 src_node = ri,
 dst_node = rj))

One router per
controller

An “external” link between the
controller and the network

An “internal” link between each of
the routers to every other router

Ports -> Ruby interface

CPU CPU CPU OtherDMA

RUBY

DRAM
Ctrl

DRAM
Ctrl

“Classic” ports

“Classic” ports

Ruby -> Memory

RUBY

DRAM
Ctrl

DRAM
Ctrl

Any controller can connect its “memory” port.
 Usually, only “directory” controllers.

Declare MessageBuffer in params called
“requestToMemory”

Declare in_port with MessageBuffer called
“responseFromMemory”

Must be type “MemoryMessage”

CPU->Ruby: Sequencers

Confusing: Two names, same thing: RubyPort and Sequencer

Sequencer is a SimObject with classic ports

Converts gem5 packets to RubyRequests

New messages delivered to the “MandatoryQueue”

CPU

RUBY
Sequencer

Example config file

See MSI configuration file

Where is . . . ?

Configuration

 configs/network Configuration of network models

 configs/topologies Default cache topologies

 configs/ruby Protocol config and Ruby config

 Ruby config: configs/ruby/Ruby.py

 Entry point for Ruby configs and helper functions

 Selects the right protocol config “automatically”

Where is . . . ?

SLICC

 src/mem/slicc Code for the compiler

 src/mem/ruby/slicc_interface

 Structures used only in generated code

 AbstractController

Don’t be afraid to dig into the
compiler! It’s often necessary.

Where is . . . ?

src/mem/ruby/structures

 Structures used in Ruby (e.g., cache memory, replace policy)

src/mem/ruby/system

 Ruby wrapper code and entry point

 RubyPort/Sequencer

 RubySystem: Centralized information, checkpointing, etc.

Where is . . . ?

src/mem/ruby/common General data structures, etc.

src/mem/ruby/filters Bloom filters, etc.

src/mem/ruby/network Network model

src/mem/ruby/profiler Profiling for coherence protocols

Current protocols (src/mem/protocol)

GPU VIPER (“Realistic” GPU-CPU protocol)

GPU VIPER Region (HSC paper)

Garnet standalone (No coherence, just traffic injection)

MESI Three level (like two level, but with L0 cache)

MESI Two level (private L1s shared L2)

MI example (Example: Do not use for performance)

MOESI AMD (Core pairs, 3 level, optionally with region coherence)

MOESI CMP directory

MOESI CMP token

MOESI hammer (Like AMD hammer protocol for opteron/hyper transport)

CHI protocol

Configurable like classic, detailed

with SLICC

The cache can be configured to be

inclusive, exclusive, L1, L2, L3,

directory only, etc.

Even more complex to configure

More coming to stdlib soon!

	Slide 1: Office hours
	Slide 2: Plan for the week
	Slide 3: Ruby, SLICC, and modeling coherence
	Slide 4: Outline
	Slide 5: gem5 history
	Slide 6: Cache coherence reminder
	Slide 7: MSI protocol (Fig. 8.3)
	Slide 8
	Slide 9: Ruby
	Slide 10: Ruby components
	Slide 11: Controller Models
	Slide 12: SLICC original purpose
	Slide 13: SLICC original purpose
	Slide 14: MSI-cache.sm
	Slide 15
	Slide 16: Cache state machine outline
	Slide 17: Cache memory
	Slide 18: Message buffers
	Slide 19: in_ports and Msg definitions
	Slide 20: The .slicc file
	Slide 21: State declarations
	Slide 22: Event declarations
	Slide 23: Other structures and functions
	Slide 24: Ports/Message buffers
	Slide 25: In ports
	Slide 26: Actions
	Slide 27: Transitions
	Slide 28: Exercise!
	Slide 29: Ruby config scripts
	Slide 30: Ruby config scripts
	Slide 31: Creating the topology
	Slide 32
	Slide 33: Ports -> Ruby interface
	Slide 34: Ruby -> Memory
	Slide 35: CPU->Ruby: Sequencers
	Slide 36: Example config file
	Slide 37: Where is . . . ?
	Slide 38: Where is . . . ?
	Slide 39: Where is . . . ?
	Slide 40: Where is . . . ?
	Slide 41: Current protocols (src/mem/protocol)
	Slide 42: CHI protocol

