
Plan for the week

Monday Tuesday Wednesday Thursday Friday

Introduction
• Getting started 

with gem5: 
using, develop, 
and simulation

Using gem5
• gem5 standard 

library

Using gem5
• General using
• gem5 models: 

caches, CPUs, 
memory

• Full system sim
• Accelerating 

simulation

gem5 devel
• First SimObject, 

params, events, 
memory ops

• Instruction 
execution

• Adding an 
instruction

gem5 devel
• Classic caches
• Ruby and SLICC
• OCN and Garnet

• gem5’s GPGPU 
model

Extra topics
• Contributing to 

gem5

• Using other 
simulators w/ 
gem5

• Whatever you 
want!



All things 

SimObject

A presentation by 

Mahyar Samani



git pull origin main

· Run the following commands in gem5-bootcamp-env:

· "git stash“

· git remote –v …. Upstream: https://github.com/gem5bootcamp...

· "git pull upstream main"

· "git stash pop"

3



Let's start with compiling :D

· Run the following command in gem5:

· "scons build/NULL/gem5.opt -j$(nproc)"

4



SimObject and Clocked Object

· Almost all the objects in the gem5 code base are SimObjects.

· A SimObject represents things that correspond to physical components and can be 

specified and instantiated via the config file (CPUs, caches, etc.).

· A ClockedObject extends the SimObject with a clock and accessor functions 

(nextCycle, clockEdge) to relate ticks (the unit of time in simulation) to its cycles.

5



How to SimObject?

· Files in the source code that represent a SimObject/ClockedObject:

1- SimObject file (Python Wrapper)

Define parameters, connections

Use to instantiate a SimObject in the config script.

2- header file (.hh)

Use parameters from python, define internal functionality, define connections in 

accordance with SimObject file.

3- source code file (.cc)

Implement functionality

4- params file (.hh, auto generated from SimObject file)

6



Let's copy the boilerplates

· Run the following command in gem5-bootcamp-env:

· "cp -r materials/developing-gem5-models/02-simobj/bootcamp gem5/src/"

7



What is a SimObject file?

Defines a SimObject in the Python world. It also defines the tunable parameters of a 

SimObject (e.g. cache size for a cache).

"gem5/src/bootcamp/hello-sim-object/HelloSimObject.py"

8



How should the header file look like?

· "gem5/src/bootcamp/hello-sim-object/hello_sim_object.hh"

9



What should the source code file look like?

· "gem5/src/bootcamp/hello-sim-object/hello_sim_object.cc"

10



What next? Can I now use my SimObject in my 

config script?

Not yet, we first have to register our SimObject. To do that we have to modify the 

Sconscript in the same directory as the source code for our SimObject. If a Sconscript file 

does not exist, we should simply create one.

· "gem5/src/bootcamp/hello-sim-object/SConscript"

11



Are we there yet?

· Run the following command in gem5:

· "scons build/NULL/gem5.opt -j$(nproc)"

12



What about params?

· "gem5/build/NULL/params/HelloSimObject.hh"

13

SimObject

HelloSimObject ClockedObject

BaseCPU

SimObjectParams

HelloSimObjectParams ClockedObjectParams

BaseCPUParams



Let’s sim

Run the following command in gem5:

"build/NULL/gem5.opt src/bootcamp/hello-sim-object/run_hello.py"

"gem5/src/bootcamp/hello-sim-object/run_hello.py"

14



Debug Flags

Debug flags are used to enable gem5’s printf like debugging. In order to add a new 

DebugFlag a definition for a flag should be added to a SConscript file.

"gem5/src/bootcamp/hello-sim-object/SConscript"

15



How to use Debug Flags?

· Include "base/trace.hh"

· Include the header file for the debug flag (autogenerated).

· Use DPRINTF({debug-flag}, {debug formatted string});

· "gem5/src/bootcamp/hello-sim-object/hello_sim_object.hh"

16



gem5 architecture: Simulating

gem5 is a discrete event simulator

1) Event at head dequeued

2) Event executed

3) More events queued

Event - 10

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

Event - 55



gem5 architecture: Simulating

gem5 is a discrete event simulator

1) Event at head dequeued

2) Event executed

3) More events queued

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

All SimObjects can enqueue
events to the event queue

We’ll cover more 
later

Event - 55

Event - 51



Discrete event simulation example

TIME

Fetch first inst

Send req to cache

Miss in L1, send to 
DRAM

Put in read Q

L1 tag latency To DRAM latency DRAM read latency

Get data from 
DRAM

Cache recvs data

Processor decodes 
instruction

Processor executes 
instruction

Fetch next 
inst

Response latency One cycle



Let’s talk about events

Events at the high level represent different types of interactions within/between 

SimObjects. Each event executes a function that is called at the tick when the respective 

event is scheduled.

· "gem5/src/bootcamp/hello-sim-object/hello_sim_object.hh"

20



virtual void SimObject::startup()

Final initialization call before simulation starts. All state is initialized. This function is the 

correct place to schedule initial events.

"gem5/src/bootcamp/hello-sim-object/hello_sim_object.hh"

21



Other initialization functions

· virtual void SimObject::init(): First initialization call. All SimObjects are instantiated, 

and all ports are connected.

· virtual void SimObject::initState(): Called after init() only when simulating afresh. i.e. 

not called when restoring a checkpoint

· virtual void SimObject::loadState() Called after init() and only when restoring from a 

checkpoint.

22



Let’s code

We will look at an example on how to initialize an event. Then students will follow as I 

change the constructor of HelloObject to initialize event.

· "gem5/src/bootcamp/hello-sim-object/hello_sim_object.cc"

23



Schedule(...)

Function inherited from EventManager (SimObject is EventManager). Schedules an 

event on a specific tick.

Args: Event*, Tick: takes absolute time in ticks.

· "gem5/src/bootcamp/hello-sim-object/hello_sim_object.cc"

24



Let’s code

Now, we have to implement the callback function for our event.

Students will follow as I implement processEvent.

· "gem5/src/bootcamp/hello-sim-object/hello_sim_object.cc"

25



Let’s recompile

· Run the following command in gem5:

· "scons build/NULL/gem5.opt -j$(nproc)"

26



Let’s sim

Run the following commands in gem5:

1- "build/NULL/gem5.opt src/bootcamp/hello-sim-object/run_hello.py"

2- "build/NULL/gem5.opt --debug-flags=HelloExampleFlag src/bootcamp/hello-sim-

object/run_hello.py"

27



Let’s sim

Run the following commands in gem5:

1- "build/NULL/gem5.opt src/bootcamp/hello-sim-object/run_hello.py"

2- "build/NULL/gem5.opt --debug-flags=HelloExampleFlag src/bootcamp/hello-sim-

object/run_hello.py"

28

Do you see a difference in the outputs?



Let’s make it more interesting.

Let’s make our SimObject print “Hello world! Processing the event!” n times, every L 

ticks.

"gem5/src/bootcamp/hello-sim-object/hello_sim_object.hh"

29



Let’s make it more interesting.

· "gem5/src/bootcamp/hello-sim-object/hello_sim_object.cc"

30



Can we change latency and timesLeft from config 

script?

Yes. Params are the tool to do that. We can add params to HelloObject SimObject file to 

set the values for timesLeft and latency.

"gem5/src/bootcamp/hello-sim-object/HelloSimObject.py"

31



Is this it? Are we done?

Not yet. We still have to initialize timesLeft and latency to correct values in C++.

· "gem5/src/bootcamp/hello-sim-object/hello_sim_object.cc"

32



Let’s recompile

· Before we do anything:

Look at "gem5/build/NULL/params/HelloSimObject.hh"

· Run the following command in gem5:

· "scons build/NULL/gem5.opt -j$(nproc)"

· Look at "gem5/build/NULL/params/HelloSimObject.hh"

33



Let’s recompile

· Before we do anything:

Look at "gem5/build/NULL/params/HelloSimObject.hh"

· Run the following command in gem5:

· "scons build/NULL/gem5.opt -j$(nproc)"

· Look at "gem5/build/NULL/params/HelloSimObject.hh"

34

Notice anything different?



Let’s sim

Run the following commands in gem5:

"build/NULL/gem5.opt --debug-flags=HelloExampleFlag src/bootcamp/hello-sim-

object/run_hello.py"

35



Let’s sim

Run the following commands in gem5:

"build/NULL/gem5.opt --debug-flags=HelloExampleFlag src/bootcamp/hello-sim-

object/run_hello.py"

36

What is wrong?



Let's compile again :D

· Run the following command in gem5:

· "scons build/X86/gem5.opt -j$(nproc)"

37



Interacting with memory

· Let's build a simple memory object with the following specs:

· Sits between CPU and memory. Forwards requests from CPU to memory and 

responses from memory to CPU one Packet at a time.

· Separate interface for instruction and data requests.

38



Packets

· Encapsulation of information required to interact with memory. Some included info 

are:

· MemCmd: readReq, readResp, writeReq, writeResp

· RequestorID: ID for the Requestor SimObject.

· Addr: Address of the data requested.

· Data: Depending on the MemCmd packet might have data. e.g. Request packets for 

write, and response for read.

39



A high-level overview of interacting with memory

40



Packets are moved around 

through ports.



Ports and Accesses

All memory objects are connected to each other through ports. Ports facilitate the movement 

of data/information between different objects. There are 3 different types of accesses that 

ports allow: timing, atomic, and functional.

· Timing: timing accesses move the time (simulated interactions take time). They are the 

only mode of access that result in correct simulation results. (We will focus on this)

· Atomic: Used for fast-forwarding. No events are scheduled in the memory system. 

Memory is accessed through a long chain of function calls.

· Functional: Used for debugging purposes. It is used for things like reading data from the 

host to the simulator.

42



Request and Response Ports

Request ports facilitate requesting data from another SimObject. Important methods to note:

· sendTimingReq

· recvTimingResp

· recvReqRetry

Response ports provide Request ports with the data requested. Important methods to note:

· recvTimingReq

· sendTimingResp

· recvRespRetry

NOTE: Only ports of different types could be connected to each other.

43



Port Connection and interaction

User needs to connec ports to each other in the python using "=". PyBind takes care of 

peer ports being connected to each other in C++.

IMPORTANT NOTE: Only ports of opposite type could be connected to each other.

44



45



46



47



Let's start coding

Look at "gem5/src/bootcamp/simple-mem-object/SimpleMemObject.py"

48



Let's start coding

Look at "gem5/src/bootcamp/simple-mem-object/simple_mem_object.hh"

49



getAddrRanges()

ResponsePort::getAddrRanges(): returns a list of AddrRanges the response port is 

responsible for.

RequestPort::getAddrRanges(): returns peer.getAddrRanges()

REMEMER: For every request port "peer" is a response port.

50



What does it look like?

51



Let's recompile

· Run the following command in gem5:

· "scons build/X86/gem5.opt -j$(nproc)"

52



Let’s sim

Let's take a look at "gem5/src/bootcamp/simple-mem-object/run_simple_mem_object.py"

Run the following commands in gem5:

"build/NULL/gem5.opt --debug-flags=SimpleMemObject src/bootcamp/simple-mem-

object/run_simple_mem_object.py"

53



SimpleCacheObject

· Let's build a cache with the following specs:

· Connects to multiple CPU cores.

· Connects to one memory controller.

· Has configurable latency and size.

· Gives stats: numHits, numMisses, hitRatio, missLatencyHist

54



Diagram of the system in mind

55


	Slide 1: Plan for the week
	Slide 2: All things SimObject
	Slide 3: git pull origin main
	Slide 4: Let's start with compiling :D
	Slide 5: SimObject and Clocked Object
	Slide 6: How to SimObject?
	Slide 7: Let's copy the boilerplates
	Slide 8: What is a SimObject file?
	Slide 9: How should the header file look like?
	Slide 10: What should the source code file look like?
	Slide 11: What next? Can I now use my SimObject in my config script?
	Slide 12: Are we there yet?
	Slide 13: What about params?
	Slide 14: Let’s sim
	Slide 15: Debug Flags
	Slide 16: How to use Debug Flags?
	Slide 17: gem5 architecture: Simulating
	Slide 18: gem5 architecture: Simulating
	Slide 19: Discrete event simulation example
	Slide 20: Let’s talk about events
	Slide 21: virtual void SimObject::startup()
	Slide 22: Other initialization functions
	Slide 23: Let’s code
	Slide 24: Schedule(...)
	Slide 25: Let’s code
	Slide 26: Let’s recompile
	Slide 27: Let’s sim
	Slide 28: Let’s sim
	Slide 29: Let’s make it more interesting.
	Slide 30: Let’s make it more interesting.
	Slide 31: Can we change latency and timesLeft from config script?
	Slide 32: Is this it? Are we done?
	Slide 33: Let’s recompile
	Slide 34: Let’s recompile
	Slide 35: Let’s sim
	Slide 36: Let’s sim
	Slide 37: Let's compile again :D
	Slide 38: Interacting with memory
	Slide 39: Packets
	Slide 40: A high-level overview of interacting with memory
	Slide 41: Packets are moved around through ports.
	Slide 42: Ports and Accesses
	Slide 43: Request and Response Ports
	Slide 44: Port Connection and interaction
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Let's start coding
	Slide 49: Let's start coding
	Slide 50: getAddrRanges()
	Slide 51: What does it look like?
	Slide 52: Let's recompile
	Slide 53: Let’s sim
	Slide 54: SimpleCacheObject
	Slide 55: Diagram of the system in mind

